ĐỀ CƯƠNG
1) Tập hợp và các phép toán trên tập hợp .
2) Tập xác định, sự biến thiên, tính chẵn lẻ của hàm số .
3) Hàm số y = ax + b và y = ax2 + bx + c : Sự biến thiên và đồ thị của hàm số,
xác định hàm số thỏa điều kiện cho trước.
4) Phương trình bậc nhất và bậc hai một ẩn, hê PT bậc nhất 2 ẩn.
5) Vectơ và các phép toán trên vectơ : Xác định vectơ ( phương , hướng và độ
dài ), xác định điểm thỏa đẳng thức vectơ, chứng minh đẳng thức vectơ .
6) Hệ trục tọa độ : Tìm tọa độ của vectơ và của điểm thỏa điều kiện cho trước .
7) Giá trị lượng giác của góc
§Ò c¬ng «n tËp häc kú I to¸n 10 CƠ BẢN N¨m häc 2009- 2010 ĐỀ CƯƠNG 1) Tập hợp và các phép toán trên tập hợp . 2) Tập xác định, sự biến thiên, tính chẵn lẻ của hàm số . 3) Hàm số y = ax + b và y = ax2 + bx + c : Sự biến thiên và đồ thị của hàm số, xác định hàm số thỏa điều kiện cho trước. 4) Phương trình bậc nhất và bậc hai một ẩn, hê PT bậc nhất 2 ẩn. 5) Vectơ và các phép toán trên vectơ : Xác định vectơ ( phương , hướng và độ dài ), xác định điểm thỏa đẳng thức vectơ, chứng minh đẳng thức vectơ . 6) Hệ trục tọa độ : Tìm tọa độ của vectơ và của điểm thỏa điều kiện cho trước . 7) Giá trị lượng giác của góc ( 00 1800 ) CÁC DẠNG BÀI TẬP PhÇn I: §¹i sè Ch¬ng i. tËp hîp. MÖnh ®Ò Bµi 1: LiÖt kª c¸c phÇn tö cña c¸c tËp hîp sau. a/ A = {3k -1| k Z , -5 k 3} b/ B = {x Î Z / x2 - 9 = 0} c/ C = {x Î R / (x - 1)(x2 + 6x + 5) = 0} d/ D = {x Î Z / |x |£ 3} e/ E = {x / x = 2k vôùi k Î Z vµ -3 < x < 13} Bµi 2: Tìm tÊt c¶ c¸c tËp hîp con cña tËp: a/ A = {a, b} b/ B = {a, b, c} c/ C = {a, b, c, d} Bµi 3: Tìm A Ç B ; A È B ; A \ B ; B \ A , bieát raèng : a/ A = (2, + ¥) ; B = [-1, 3] b/ A = (-¥, 4] ; B = (1, +¥) c/ A = {x Î R / -1 £ x £ 5}B = {x Î R / 2 < x £ 8} Ch¬ng II: Hµm sè bËc nhÊt vµ bËc hai Bµi 1: T×m tËp x¸c ®Þnh cña c¸c hµm sè sau: a) b) y= c) d) Baøi 2: Xeùt tính chaün, leû cuûa haøm soá : a/ y = 4x3 + 3x b/ y = x4 - 3x2 - 1 c/ Bµi 3: Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ c¸c hµm sè sau: a) y = 3x-2 b) y -2x + 5 Bµi 4: X¸c ®Þnh a, b ®Ó ®å thÞ hµm sè y=ax+b ®Ó: a) §i qua hai ®iÓm A(0;1) vµ B(2;-3) b/ §i qua C(4, -3) vµ song song víi ®t y = -x + 1 c/ Ñi qua D(1, 2) vaø coù heä soá goùc baèng 2 d/ Ñi qua E(4, 2) vaø vuoâng goùc vôùi ñt y = -x + 5 Bµi 5: Xeùt söï bieán thieân vaø veõ ñoà thò caùc haøm soá sau : c/ y = -x2 + 2x - 3 d) y = x2 + 2x Bµi 6: X¸c ®Þnh parabol y=ax2+bx+1 biÕt parabol ®ã: a) Qua A(1;2) vµ B(-2;11) b) Cã ®Ønh I(1;0) c) Qua M(1;6) vµ cã trôc ®èi xøng cã ph¬ng tr×nh lµ x=-2 d) Qua N(1;4) cã tung ®é ®Ønh lµ 0. Bµi 7: Tìm Parabol y = ax2 - 4x + c, bieát raèng Parabol ñoù: a/ §i qua hai ®iÓm A(1; -2) vµ B(2; 3) b/ Cã ®Ønh I(-2; -2) c/ Cã hoµnh ®é ®Ønh lµ -3 vµ ®i qua ®iÓm P(-2; 1) d/ Cã trôc ®èi xøng lµ ®êng th¼ng x = 2 vµ c¾t trôc hoµnh t¹i ®iÓm (3; 0) Ch¬ng III: PHÖÔNG TRÌNH VAØ HEÄ PHÖÔNG TRÌNH Bµi 1: Giaûi caùc phöông trình sau : 1/ 2/ 3/ 4/ 5/ 6/ (x2 - x - 6) = 0 Bµi 2: Giaûi caùc phöông trình sau : 1/ 2/ 1 + = 3/ Bµi 3: Giaûi caùc phöông trình sau : 1/ 2/ |2x - 2| = x2 - 5x + 6 3/ |x + 3| = 2x + 1 4/ |x - 2| = 3x2 - x - 2 Bµi 4: Giaûi caùc phöông trình sau : 1/ = x - 2 2/ x - = 4 Bµi 5: Giaûi vaø bieän luaän caùc phöông trình sau theo tham soá m : 1/ 2mx + 3 = m - x 2/ (m - 1)(x + 2) + 1 = m2 3/ (m2 + m)x = m2 - 1 4/ (m2 – 4)x = m + 2 Bµi 6: Giaûi caùc heä phöông trình sau : a. b. c. d. Bµi 7: Cho ph¬ng tr×nh x2 - 2(m - 1)x + m2 - 3m = 0. Ñònh m ñeå phöông trình: a/ Cã hai nghiÖm ph©n biÖt b/ Cã hai nghiÖm c/ Cã nghiÖm kÐp, t×m nghiÖm kÐp ®ã. d/ Cã mét nghiÖm b»ng -1 tÝnh nghiÖm cßn l¹i e/ Cã hai nghiÖm tho¶ 3(x1+x2)=- 4 x1 x2 f/ Cã hai nghiÖm tho¶ x1=3x2 Bµi 8: Cho pt x2 + (m - 1)x + m + 2 = 0 a/ Gi¶i ph¬ng tr×nh víi m = -8 b/ T×m m ®Ó pt cã nghiÖm kÐp. T×m nghiÖm kÐp ®ã c/ T×m m ®Ó PT cã hai nghiÖm tr¸i dÊu d/ T×m m ®Ó PT cã hai nghiÖm ph©n biÖt tháa m·n x12 + x22 = 9 PhÇn II: h×nh häc Bµi 1: Cho 6 ®iÓm ph©n biÖt A, B, C, D, E, F chøng minh : Bµi 2: Cho tam gi¸c MNP cã MQ lµ trung tuyÕn cña tam gi¸c . Gäi R Lµ trung ®iÓm cña MQ. Cmr : c) Dùng ®iÓm S sao cho tø gi¸c MNPS lµ h×nh b×nh hµnh. Chøng tá r»ng d)Víi ®iÓm O tïy ý, h·y chøng minh r»ng ; Bµi 3:.Cho 4 ®iÓm bÊt k× A,B,C,D vµ M,N lÇn lît lµ trung ®iÓm cña ®o¹n th¼ng AB,CD.Chøng minh r»ng: a) b) c) Gäi I lµ trung ®iÓm cña BC.Chøng minh r»ng: Bµi 4:. Cho tam gi¸c MNP cã MQ ,NS,PI lÇn lît lµ trung tuyÕn cña tam gi¸c . Chøng minh r»ng: b) Chøng minh r»ng hai tam gi¸c MNP vµ tam gi¸c SQI cã cïng träng t©m . c) Gäi M’ Lµ ®iÓm ®èi xøng víi M qua N , N’ Lµ ®iÓm ®èi xøng víi N qua P , P’ Lµ ®iÓm ®èi xøng víi P qua M. Chøng minh r»ng víi mäi ®iÓm O bÊt k× ta lu«n cã: Bµi 5: Gäi G vµ lÇn lît lµ träng t©m cña tam gi¸c ABC vµ tam gi¸c . Chøng minh r»ng Bµi 6: Cho tam gi¸c ABC , gäi M lµ trung ®iÓm cña AB, N lµ mét ®iÓm trªn AC sao cho NC=2NA, gäi K lµ trung ®iÓm cña MN Bµi 7: a) Cho MK vµ NQ lµ trung tuyÕn cña tam gi¸c MNP.H·y ph©n tÝch c¸c vÐct¬ theo hai vÐct¬ , b) Trªn ®êng th¼ng NP cña tam gi¸c MNP lÊy mét ®iÓm S sao cho . H·y ph©n tÝch vÐct¬ theo hai vÐct¬ , c) Gäi G lµ träng t©m cña tam gi¸c MNP .Gäi I lµ trung ®iÓm cña ®o¹n th¼ng MG vµ H lµ ®iÓm trªn c¹nh MN sao cho MH = .H·y ph©n tÝch c¸c vÐct¬ theo hai vÐct¬ , Bµi 8: Cho 3 ®iÓm A(1,2), B(-2, 6), C(4, 4) Chøng minh A, B,C kh«ng th¼ng hµng b)T×m to¹ ®é trung ®iÓm I cña ®o¹n AB c)T×m to¹ ®é träng t©m G cña tam gi¸c ABC d)T×m to¹ ®é ®iÓm D sao cho tø gi¸c ABCD lµ h×nh bh e)T×m to¹ ®é ®iÓm N sao cho B lµ trung ®iÓm cña ®o¹n AN f)T×m to¹ ®é c¸c ®iªm H, Q, K sao cho C lµ träng t©m cña tam gi¸c ABH, B lµ träng t©m cña tam gi¸c ACQ, A lµ träng t©m cña tam gi¸c BCK. g)T×m to¹ ®é ®iÓm T sao cho 2 ®iÓm A vµ T ®èi xøng nhau qua B, qua C. h) k) Bµi 9: Cho tam gi¸c ABC cã M(1,4), N(3,0); P(-1,1) lÇn lît lµ trung ®iÓm cña c¸c c¹nh: BC, CA, AB. T×m to¹ ®é A, B, C. Bµi 10: Trong mÆt ph¼ng täa ®é Oxy.Chøng minh r»ng c¸c ®iÓm: a),, th¼ng hµng. b),, th¼ng hµng. c),, kh«ng th¼ng hµng. Bµi 11: Trong hÖ trôc täa cho hai ®iÓm vµ.T×m täa ®é: a) §iÓm M thuéc Ox sao cho A,B,M th¼ng hµng. b) §iÓm N thuéc Oy sao cho A,B,N th¼ng hµng. Bµi 12: Cho tam gi¸c ABC vu«ng t¹i A, cã gãcB= 600. a) Xaùc ñònh goùc giöõa caùc vectô b) TÝnh gi¸ trÞ lîng gi¸c cña c¸c gãc trªn.
Tài liệu đính kèm: