GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ
I, Tư tưởng đặt ẩn phụ
- Xác định phương trình cơ bản:
Ví dụ: phương trình t2 – 3t + 2
Họ và tên : Đặng Việt Anh Lớp : 10A3 Trường : THPT Ân Thi Nhóm :. . . . . . Gồm hs:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ I, Tư tưởng đặt ẩn phụ Xác định phương trình cơ bản: Ví dụ: phương trình t2 – 3t + 2 + chọn t = à phương trình có dạng + chọn t = à phương trình có dạng II, Các phương pháp đặt ẩn phụ 1, Đặt 1 ẩn phụ Một số kiểu đặt thường gặp + à Ta nên đặt t = ( + à Ta nên đặt + à Ta nên đặt 2, Chia làm xuất hiện ẩn phụ Chia 2 vế phương trình cho hoặc x, x2 đại lượng thích hợp. Trước khi chia cho 1 lượng nào đó ta phải kiểm tra lượng đó bằng 0 có là nghiệm phương trình không III, Bài tập hướng dẫn Bài tập 1: Giải phương trình Bài giải: B1: Đặt () B2: Biến đổi căn thức bằng cách bình phương (1) Ta nhận thấy B3: Thay vào phương trình Giải pt ta được nghiệm không thỏa mãn điều kiện ) B4: Thay t =1 vào (1) ta sẽ được nghiệm x. t=1 à à phương trình có 2 nghiệm x=0 (TM) và x=-2 (TM). KL: x=0 và x=-2 là nghiệm của pt Bài tập 2: Giải phương trình . Bài giải: Tương tự như các bước trên: Đk: Đặt (2) Thay vào pt: Giải pt có 2 nghiệm ( loại không thỏa mãn điều kiện) Thay t=5 vào (2) Giải pt suy ra x=143 (KTM) x=3(TM) KL: x=3 là nghiệm của pt Bài tập 3: Giải phương trình . Bài giải: ĐK: Rút gọn pt: Đặt +1 (3) Thay vào phương trình: (loại ktm đk) Thay t=2 vào (3) Giải pt suy ra cả 2 đều TM KL: Ví dụ 4: giải pt Bài giải: Bình phương khử căn: Chia cả 2 vế cho ta đc: Đặt loại t=0 vì k tm đk Thay t=5 vào pt Thay x=1 và x=4 vào pt ta thấy x=4 là nghiệm thỏa mãn còn x=1 không thỏa mãn
Tài liệu đính kèm: