GIáo án Đại số 10 - Chương I - Bài 1: Mệnh đề - Bài tập

GIáo án Đại số 10 - Chương I - Bài 1: Mệnh đề - Bài tập

i. Mục đích yêu cầu của bài dạy:

 1. Kiến thức cơ bản: Khái niệm mệnh đề, mệnh đề tương đương, phủ định một mệnh đề.

 2. Kỹ năng, kỹ xảo: Rèn luyện các thao tác phân tích, tổng hợp, so sánh; Rèn luyện tư duy logic và ngôn ngữ chính xác; Rèn luyện tính linh hoạt, tính độc lập của trí tuệ; Rèn luyện kỹ năng, kỹ xảo nhận xét mệnh đề đúng, sai từ đó khắc sâu kiến thức về mệnh đề chứa kí hiệu , và hình thành phương pháp phản chứng.

 3. Thái độ nhận thức: Ham muốn và cần thiết phải học toán, phát huy tính độc lập, chủ động và tìm cách ứng dụng mệnh đề vào trong cuộc sống giao tiếp hàng ngày; Rèn luyện đức tính cần cù và nhẫn nại, tự lực và có ý chí vượt khó, tính kỉ luật và làm việc có hệ thống.

 

doc 3 trang Người đăng trường đạt Lượt xem 1210Lượt tải 0 Download
Bạn đang xem tài liệu "GIáo án Đại số 10 - Chương I - Bài 1: Mệnh đề - Bài tập", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THPT TRẦN QUỐC TOẢN 
§1. MỆNH ĐỀ – BÀI TẬP
CHƯƠNG I TIẾT 2
Ngày ..... tháng ..... năm 2004
I. Mục đích yêu cầu của bài dạy:
 1. Kiến thức cơ bản: Khái niệm mệnh đề, mệnh đề tương đương, phủ định một mệnh đề.
 2. Kỹ năng, kỹ xảo: Rèn luyện các thao tác phân tích, tổng hợp, so sánh; Rèn luyện tư duy logic và ngôn ngữ chính xác; Rèn luyện tính linh hoạt, tính độc lập của trí tuệ; Rèn luyện kỹ năng, kỹ xảo nhận xét mệnh đề đúng, sai từ đó khắc sâu kiến thức về mệnh đề chứa kí hiệu ", $ và hình thành phương pháp phản chứng. 
 3. Thái độ nhận thức: Ham muốn và cần thiết phải học toán, phát huy tính độc lập, chủ động và tìm cách ứng dụng mệnh đề vào trong cuộc sống giao tiếp hàng ngày; Rèn luyện đức tính cần cù và nhẫn nại, tự lực và có ý chí vượt khó, tính kỉ luật và làm việc có hệ thống. 
II. Đồ dùng dạy học: SGK.
III. Các hoạt động trên lớp:
 1. Kiểm tra bài cũ: Thế nào là mệnh đề toán học, ví dụ? mệnh đề kéo theo đúng khi nào? sai khi nào?
 2. Giảng bài mới: 
TG
NỘI DUNG
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
2’
15’
15’
10’
1. Trong các phát biểu sau, cho biết phát biểu nào là mệnh đề và nếu là mệnh đề thì đúng hay sai?
 a) Số 11 là số chẵn.
 b) 2x + 3 là số nguyên dương.
 c) Bạn có chăm học không?
 d) Paris không phải là thủ đô của Pháp.
2. Các mệnh đề sau đây đúng hay sai? Giải thích ?
 a) Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.
 b) Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh bằng nhau.
 c) Một tam giác là tam giác vuông khi và chỉ khi nó có một góc (trong) bằng tổng hai góc còn lại.
 d) Một tam giác là tam giác đều khi và chỉ khi nó có hai trung tuyến bằng nhau và một góc bằng 600.
3. Các mệnh đề sau đây đúng hay sai? Nếu sai, hãy sửa lại cho đúng:
 a) $x Ỵ R, x < x2.
 b) "x Ỵ R, çxç < 3 Û x < 3.
 c) "n Ỵ N, n2 + 1 không chia hết cho 3.
 d) $a Ỵ Q, a2 = 2.
4. Xét xem các mệnh đề sau đây đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
 a) $x Ỵ Q, 4x2 – 1 = 0.
 b) $n Ỵ N, n2 + 1 4.
 c) "x Ỵ R, (x – 1)2 ¹ x – 1.
 d) "n Ỵ N, n2 > n.
- Thế nào là mệnh đề?
- Câu b và c có phải là mệnh đề không? vì sao? 
- Mệnh đề P Û Q gồm hai mệnh đề đúng nào?
- Phát mệnh đề P Þ Q? mệnh đề đúng hay sai?
- Phát mệnh đề Q Þ P? 
- Hai tam giác ABC và A’BC có diện tích bằng nhau nhưng có bằng nhau không?
- Hai tam giác ABC và A’B’C’ đồng dạng, có một cạnh bằng nhau nhưng có bằng nhau không?
- Tổng ba góc trong của một tam giác bằng bao nhiêu độ?
- Giả sử tam giác ABC có ÐA = ÐB + ÐC, khi đó góc A bằng bao nhiêu độ?
- Giả sử DABC có AM = BN và ÐA = 600, khi đó tam giác ABC là tam giác gì? vì sao?
- Kí hiệu $ và " có ý nghĩa gì?
- Trên tập số thực R có số nào nhỏ hơn bình phương chính nó không? ví dụ?
- Để kiểm tra mệnh đề này ta phải kiểm tra điều gì?
- Một số tự nhiên chia cho 3 có thể có những số dư nào? 
- Có số hữu tỉ nào bình phương bằng 2 không? vì sao?
- Từ đó có nhận xét gì về phương pháp chứng minh một mệnh đề có " và $ là một mệnh đề đúng?
- Phủ định của “"” là gì? phủ định của “$” là gì?
- Mệnh đề này đúng hay sai? vì sao?
- Mệnh đề này đúng hay sai? vì sao?
- Có giá trị x nào làm cho (x – 1)2 = x – 1 không?
- Vậy mệnh đề trên đúng hay sai?
- Mệnh đề này đúng hay sai? vì sao?
- Mệnh đề là một phát biểu khẳng định một sự kiện sao cho khẳng định đó nhận một trong hai giá trị hoặc đúng hoặc sai.
- Câu b và c không phải là mệnh đề vì ta chưa biết đúng hay sai.
- Gồm hai mệnh đề đúng P Þ Q và Q Þ P.
- “Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau” là mệnh đề đúng.
- “Nếu hai tam giác có diện tích bằng nhau thì bằng nhau”
- Hai tam giác này không bằng nhau.
- Hai tam giác ABC và A’B’C’ không bằng nhau.
- Tổng ba góc trong một tam giác bằng 1800.
- Khi đó ÐA = 1800 - ÐA Þ ÐA = 900.
- Khi đó tam giác ABC là tam giác đều vì AC = BC và ÐA = 600.
- Kí hiệu $ có nghĩa là tồn tại, kí hiệu " có nghĩa là với mọi.
- Có ví dụ 2 < (2)2. 
- Ta cần kiểm tra: 
"x Ỵ R, çxç < 3 Þ x < 3
"x Ỵ R, x < 3 Þ çxç < 3 
- Có thể có: chia hết 3, chia 3 dư 1, chia 3 dư 2.
- Không có số hữu tỉ nào bình phương bằng 2 vì chỉ có bình phương mới bằng 2.
- Để chứng minh mệnh đề có " đúng ta phải chứng minh mệnh đề đúng với tất cả các giá trị, còn đối với mệnh đề chứa $ ta chỉ cần chỉ ra một.
- Phủ định của “"” là “$”, phủ định của “$” là “"”.
- Đúng vì có x = thoả mãn đẳng thức.
- Sai vì tương tự cách chứng minh bài 3, ta chứng minh được n2 + 1 không chia hết cho 4, với mọi n Ỵ N.
- Có giá trị x = 1 làm cho (x – 1)2 = x – 1 .
- Mệnh đề trên là mệnh đề sai.
- Mệnh đề này sai vì n = 1 bình phương bằng chính nó.
 3. Củng cố: Để chứng minh mệnh đề A Û B ta làm những gì? Để chứng minh mệnh đề có chứa " đúng (sai) ta làm gì? Để chứng minh mệnh đề có chứa $ đúng (sai) ta làm gì?
 4. Bài tập về nhà: Đọc trước bài “Áp dụng mệnh đề vào suy luận toán học”.

Tài liệu đính kèm:

  • docDS10 CI Bai 1 BT.doc