Giáo án Đại số 10 cơ bản - Trường THPT Tĩnh Gia 3

Giáo án Đại số 10 cơ bản - Trường THPT Tĩnh Gia 3

Giáo án đại số 10 cơ bản học kỳ i

 Chương I. MỆNH ĐỀ. TẬP HỢP

Tiết 1

 MỆNH ĐỀ

I.Mục đích yêu cầu:

Thông qua bài học này học sinh cần:

1. Về kiến thức:

-HS biết thé nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.

-Biết ký hiệu phổ biến và ký hiệu tồn tại .

-Biết được mệnh đề kéo theo và mệnh đề tương đương.

-Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận.

 

doc 142 trang Người đăng trường đạt Lượt xem 1062Lượt tải 3 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Đại số 10 cơ bản - Trường THPT Tĩnh Gia 3", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Gi¸o ¸n ®¹i sè 10 c¬ b¶n häc kú i
 n¨m häc 2011-2012
 Chương I. MỆNH ĐỀ. TẬP HỢP
Ngµy22 th¸ng8 n¨m 2011
TiÕt 1
 MỆNH ĐỀ
I.Mục đích yêu cầu:
Thông qua bài học này học sinh cần:
Về kiến thức:
-HS biết thé nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.
-Biết ký hiệu phổ biến và ký hiệu tồn tại .
-Biết được mệnh đề kéo theo và mệnh đề tương đương.
-Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận.
 2. Về kỹ năng:
- Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính đúng sai của một mệnh đề trong những trường hợp đơn giản.
- Nêu được mệnh đề kéo theo và mệnh đề tương đương.
- Biết lập được mệnh đề đảo của một mệnh đề cho trước.
3. Về tư duy: Phát triển tư duy trừu tượng, tư duy khái quát hóa, tư duy lôgic,
4. Về thái độ: Học sinh có thái độ nghiêm túc, say mê trong học tập, biết quan sát và phán đoán chính xác.
II. Chuẩn bị của GV và HS:
GV: Giáo án, phiếu học tập, câu hỏi trắc nghiệm, 
HS: Đọc và soạn bài trước khi đến lớp, bảng phụ,
III. Phương pháp dạy học: 
Gợi mở, vấn đáp đan xen các hoạt động nhóm.
IV. Tiến trình bài học và các hoạt động: Bài học tiến hành trong 2 tiết
B. Tiến trình tiết học:
Ổn định lớp: Chia lớp thành 6 nhóm.
Bài mới:
MỆNH ĐỀ. MỆNH ĐỀ CHỨA BIẾN:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
TH1.Qua ví dụ nhận biết khái niệm.
HĐ1:
GV: Nhìn vào hai bức tranh (SGK trang 4), hãy đọc và so sánh các câu bên trái và các câu bên phải.
Xét tính đúng, sai ở bức tranh bên trái.
Bức tranh bên phải các câu có cho ta tính đúng sai không?
GV: Các câu bên trái là những khẳng định có tính đúng sai:
Phan-xi-păng là ngọn núi cao nhất Việt Nam là Đúng.
là Sai.
Các câu bên trái là những mệnh đề.
GV: Các câu bên phải không thể cho ta tính đúng hay sai và những câu này không là những mệnh đề.
GV: Vậy mệnh đề là gì?
GV: Phát phiếu học tập 1 cho các nhóm và yêu cầu các nhóm thảo luận đề tìm lời giải.
GV: Gọi HS đại diện nhóm 1 trình bày lời giải.
GV: Gọi HS nhóm 2 nhận xét và bổ sung thiếu sót (nếu có).
GV: Nêu chú ý:
Các câu hỏi, câu cảm thán không là mệnh đề vì nó không khẳng định được tính đúng sai.
HS: Quan sát tranh và suy nghĩ trả lời câu hỏi
HS: Rút ra khái niệm:
Mệnh đề là những khẳng định có tính đúng hoặc sai.
Một mệnh đề không thể vừa đúng, vừa sai.
HS: Suy nghĩ và trình bày lời giải...
HS: Nhận xét và bổ sung thiếu sót (nếu có).
1.Mệnh đề:
Mỗi mệnh đề phải hoặc đúng hoặc sai.
Một mệnh đề không thể vừa đúng, vừa sai.
Phiếu HT 1: Hãy cho biết các câu sau, câu nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề thì hãy xét tính đúng sai.
a)Hôm nay trời lạnh quá!
b)Hà Nội là thủ đô của Việt Nam.
c)3 chia hết 6;
d)Tổng 3 góc của một tam giác không bằng 1800;
e)Lan đã ăn cơm chưa?
HĐ 2: Hình thành mệnh đề chứa biến thông qua các ví dụ.
GV: Lấy ví dụ và yêu cầu HS suy nghĩ và trả lời.
GV: Với câu 1, nếu ta thay n bởi một số nguyên thì câu 1 có là mệnh đề không?
GV: Hãy tìm hai giá trị nguyên của n để câu 1 nhận được một mệnh đề đúng và một mệnh đề sai.
GV: Phân tích và hướng dẫn tương tự đối với câu 2.
GV: Hai câu trên: Câu 1 và 2 là mệnh đề chứa biến.
HS: Câu 1 và 2 không là mệnh đề vì ta chưa khẳng định được tính đúng sai.
HS: Nếu ta thay n bởi một số nguyên thì câu 1 là một mệnh đề.
HS: Suy nghĩ tìm hai số nguyên để câu 1 là một mệnh đề đúng, một mệnh đề sai.
Chẳng hạn:
Khi n = 3 thì câu 1 là một mệnh đề đúng.
Khi n = 6 thì câu 1 là một mệnh đề sai.
2.Mệnh đề chứa biến:
Ví dụ 1: Các câu sau có là mệnh đề không? Vì sao?
Câu 1: “n +1 chia hết cho 2”;
Câu 2: “5 – n = 3”.
II. PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 3: Xây dựng mệnh đề phủ định.
GV: Lấy ví dụ để hình thành mệnh đề phủ định.
GV: Theo em ai đúng, ai sai?
GV: Nếu ta ký hiệu P là mệnh đề Minh nói.
Mệnh đề Hùng nói “không phải P” gọi là mệnh đề phủ định của P, ký hiệu: 
GV: Để phủ định một mệnh đề, ta thêm (hoặc bớt) từ “không” (hoặc từ “không phải”) vảotước vị ngữ của mệnh đề đó.
GV: Chỉ ra mối liên hệ của hai mệnh đề P và ?
GV: Lấy ví dụ và yêu cầu HS suy nghĩ tìm lời giải.
GV: Gọi HS nhóm 3 trình bày lời giải, HS nhóm 4 và 5 nhận xét bổ sung (nếu có).
GV: Cho điểm HS theo nhóm.
HS: Suy nghĩ và trả lời câu hỏi 
HS: Chú ý theo dõi 
HS: Nếu mệnh đề P thì và ngược lại.
HS: Thảo luận theo nhóm tìm lời giải và ghi vào bảng phụ.
HS: Trình bày lời giải 
HS: Nhận xét lời giải và bổ sung thiếu sót (nếu có).
Ví dụ: Hai bạn Minh và Hùng tranh luận:
Minh nói: “2003 là số nguyên tố”
Hùng nói: “2003 không phải số nguyên tố”
Bài tập: Hãy phủ định các mệnh đề sau:
P: “là số hữu tỉ”
Q:”Hiệu hai cạnh của một tam giác nhỏ hơn cạnh thứ ba”
Xét tính đúng sai của các mệnh đề trên và mệnh đề phủ định của chúng.
MỆNH ĐỀ KÉO THEO:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 4: Hình thành và phát biểu mệnh đề kéo theo, chỉ ra tính đúng sai của mệnh đề kéo theo.
GV: Cho HS xem SGK để rút ra khái niệm mệnh đề kéo theo.
GV: Mệnh đề kéo theo ký hiệu:
GV: Mệnh đề còn được phát biểu là: “P kéo theo Q” hoặc “Từ P suy ra Q”
GV: Nêu ví dụ và gọi một HS nhóm 6 nêu lời giải.
GV: Gọi một HS nhóm 1 nhận xét, bổ sung (nếu có).
GV: Bổ sung thiếu sót (nếu có) và cho điểm HS theo nhóm.
HĐ 5:
GV: Vậy mệnh đề sai khi nào? Và đúng khi nào?
HĐ6:
GV: Các định lí toán học là những mệnh đề đúng và thường phát biểu dưới dạng , ta nói:
P là giả thiếu, Q là kết luận của định lí, hoặc
P là điều kiện đủ để có Q hoặc
Q là điều kiện cần để có P.
GV: Phát phiếu HT 2 và yêu cầu HS các nhóm thảo luận tìm lời giả.
GV: Gọi HS đại diện nhóm 3 trình bày lời giải.
GV: Gọi HS nhóm 2 nhận xét và bổ sung thiếu sót (nếu có).
GV: Bổ sung (nếu cần) và cho điểm HS theo nhóm.
GV: Lấy ví dụ minh họa đối với những định lí không phát biểu dưới dạng “Nếu thì .”
HS: Mệnh đề “ Nếu P thì Q” được gọi là mệnh đề kéo theo.
HS: Phát biểu mệnh đề : “Nếu ABC là tam giác đều thì tam giác ABC có ba đường cao bằng nhau”
Mệnh đề là một mệnh đề đúng.
HS: Suy nghĩ và trả lời câu hỏi
Mệnh đề chỉ sai khi P đúng và Q sai. Đúng trong các trường hợp còn lại.
HS: Suy nghĩ và thảo luận theo nhóm để tìm lời giải.
HS: Trình bày lời giải 
HS: Nhận xét và bổ sung lời giải của bạn (nếu có).
*Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, ký hiệu: 
Ví dụ: Từ các mệnh đề:
P: “ABC là tam giác đều”
Q: “Tam giác ABC có ba đường cao bằng nhau”.
Hãy phát biểu mệnh đề và xét tính đúng sai của mệnh đề .
*Mệnh đề PÞQ chỉ sai khi P đúng và Q sai.
*Nếu P đúng và Q đúng thì PÞQ đúng.
*Nếu Pđúng và Q sai thì PÞQ sai.
Định lý toán học thường có dạng: “Nếu P thì Q”
P: Giả thiết, Q; Kết luận
Hoặc P là điều kiện đủ để có Q, Q là điều kiện cần để có P.
*Phiếu HT 2:
Nội dung;
Cho tam giác ABC. Từ mệnh đề:
P:”ABC là tram giác cân có một góc bằng 600”
Q: “ABC là một tam giác đều”.
Hãy phát biểu định lí . Nêu giả thiếu, kết luận và phát biểu định lí này dưới dạng điêù kiện cần, điều kiện đủ.
MỆNH ĐỀ ĐẢO – HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
TH: GV nêu vấn đề bằng các ví dụ; giải quyết vấn đề qua các hoạt động:
HĐ 1:
GV: Phát phiếu HT 1 và cho HS thảo luận để tìm lời giải theo nhóm sau đó gọi HS đại diện nhóm 6 trình bày lời giải.
GV: Gọi HS nhóm 5 nhận xét và bổ sung thiếu sót (nếu có).
GV: Bổ sung thiếu sót (nếu cần) và cho điểm HS theo nhóm.
GV:- Mệnh đề được gọi là mệnh đề đảo của mệnh đề .
-Mệnh đề đảo của một mệnh đề không nhất thiết là đúng.
HS: Thảo luận thoe nhóm để tìm lời giải
HS: Trình bày lời giải:
a):”Nếu ABC là một tam giác cân thì ABC là một tam giác đều”, đây là một mệnh đề sai.
b):”Nếu ABC là một tam giác có ba góc bằng nhau thì ABC là một tam giác đều”, đây là một mệnh đề đúng.
Mệnh đề đảo:
Phiếu HT 1:
Nội dung: Cho tam giác ABC. Xét mệnh đề sau:
a)Nếu ABC là một tam giác đều thì ABC là một tam giác cân.
b)Nếu ABC là một tam giác đều thì ABC là một tam giác có ba góc bằng nhau.
Hãy phát biểu các mệnh đề tương ứng và xét tính đúng sai của chúng.
HĐ 2: Hình thành khái niệm hai mệnh đề tương đương.
GV: Cho HS nghiên cứu ở SGK và hãy cho biết hai mệnh đề P và Q tương đương với nhau khi nào?
GV: Nêu ký hiệu hai mệnh đề tương đương: PQ và nêu các cách đọc khác nhau:
+P tương đương Q;
+P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q, 
HS: Nhgiên cứu và trả lời câu hỏi: Nếu cả hai mệnh đề và đều đúng ta nói P và Q là hai mệnh đề tương đương.
KÝ HIỆU VÀ :
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 4: Dùng ký hiệu và để viết các mệnh đề và ngược lại thông qua các ví dụ:
GV: Yêu cầu HS xem ví dụ 6 SGK trang 7 và xem cách viết gọn của nó.
GV: Ngược lại, nếu ta có một mệnh đề viết dưới dạng ký hiệuthì ta cũng có thể phát biểu thành lời.
GV: Lấy ví dụ áp dụng và yêu cầu HS phát biểu thành lời mệnh đề. 
GV:Gọi HS nhận xét và bổ sung (nếu cần).
GV: Gọi 1 HS đọc nội dung ví dụ 7 SGK và yêu cầu HS cả lớp xem cách dùng ký hiệu để viết mệnh đề. 
GV: Lấy ví dụ để viết mệnh đề bằng cách dùng ký hiệu và yêu cầu HS viết mệnh đề bằng ký hiệu đó.
GV: Nhận xét và bổ sung (nếu cần).
HS: Suy nghĩ và tìm lời giải 
LG: Bình phương mọi số nguyên đều lớn hơn hoặc bằng không.
Đây là một mệnh đề đúng.
HS: Suy nghĩ và viết mệnh đề bằng ký hiệu :
HS: Nhận xét và bổ sung (nếu có)
Ví dụ1: Phát biểu thành lời mệnh đề sau:
Mệnh đề này đúng hay sai?
Ví dụ:Dùng ký hiệu Có ít nhất một số nguyên lớn hơn 1.
HĐ 5: Lập mệnh đề phủ định của một mệnh đề có ký hiệu 
GV: Gọi HS nhắc lại mối liên hệ giữa mệnh đề P và mệnh đề phủ định của P là .
GV: Yêu cầu HS xem nội dung ví dụ 8 trong SGK và GV viết mệnh đề P và lên bảng.
GV: Yêu cầu HS dùng ký hiệu để viết 2 mệnh đề P và 
GV: Gọi HS nhận xét và bổ sung (nếu cần).
GV: Phát phiếu HT 2 và cho HS thảo luận theo nhóm để tìm lời giải sau đó gọi một HS đại diện nhóm 2 trình bày lời giải.
GV: Gọi HS nhận xét và bổ sung (nếu cần) rồi cho điểm HS theo nhóm.
HS: Thảo luận theo nhóm để tìm lời giải.
HS đại diện nhóm 2 trình bày lời giải
HS: Nhận xét và bổ sung (nếu có).
Ví dụ 8:
Ta có: P:”Mọi số thực đều có bình phương khác 1”.
:”Tồn tại một số thực mà bình phương bằng 1”
*Phiếu HT 2:
Nội dung: Cho mệnh đề:
P:”Mọi số nhân với 1 đều bằng 0”
Q: “Có một số cộng với 1 bằng 0”
a)Hãy phát biểu mệnh đề phủ định của các mệnh đề trên.
b) Dùng ký hiệuđể viết mệnh đề P, Q và các mệnh đề phủ định của nó. Cho biết các mệnh đề đó, mệnh đề nào đúng, mệnh đề nào sai? 
*Củng cố:
*Hướng dẫn học ở nhà:
- Xem và học lý thuyết theo SGK.
- Làm các bài tập 1 đến 7 trang 9 và 10 SGK.
Ngµy14 th¸ng8n¨m 2009
TiÕt 2
LUYỆN TẬP
I.Mục tiệu:
Qua bài học HS cần:
Về kiến thức: Nắm được kiến thức cơ bản của: Mệnh đề, mệnh đề phủ định, mệnh đề chứa biến, mệnh đề kéo theo và mệnh đề tương đương.
Về kỹ năng: 
Biết áp dụng kiến thức cơ bản đã học vào giải toán, xét được tính đúng sai của mệnh đề, suy ra được mệnh đề đảo, mệnh đề phủ định của một mệnh đề, phát biểu được mệnh đề dưới dạng điều kiện c ...  trả lời: 
cos(+) = cos2
 = cos2-cos2
 = 1- 2sin2 
 = 2cos2-1
sin 2= 2sincos
tan2=
*Học sinh nhận nhiệm vụ,thảo luận đưa ra kết quả đúng..Đại diện nhóm trình bày kết quả cuả nhóm mình. Các nhóm khácđại diện thảo luận,góp ý bổ sung , đưa ra kết quả đúng.
HĐ1: (kiểm tra bài cũ)
Cho cung .Hãy biểu diễn cáccung đó trên đường trònlương giác .Tìm tọa độ của các véc tơ Tính tích vô hướng của hai véc tơ theo hai phương pháp .So sánh hai kết quả đó rồi đưa ra công thức. 
(cho học sinh hoạt động theo nhóm).gv theo dõi hướng dẫn học sinh thảo luận ,giúp đỡ học sinh khi cần thiết.
Cho 1 học sinh đại diện nhóm mình trình bày kết quả .
 Các học sinh của nhóm khác nhận xét ,góp ý, bổ sung đưa ra công thức.Công thức đó được gọi là công thức cộng.Đó là bài học hôm nay.
HĐ2: (chia lớp thành 2 nhóm)
HĐTP1: Từ công thức(1) . Hãy tính cos(+)?(nhóm 1
 Từ công thức (1).Hãy tinh sin(-)?(nhóm 2) .GV theo dõi các nhóm thảo luận và giúp đỡ khi cần thiết. 
Cho đại diện nhóm trình bày kết quả của nhóm mình . các nhóm còn lại tham gia góp ý bổ sung .Giáo viên tổng hợp công thức. 
HĐTP2: Tương tự tính Sin(+)? 
 HĐTP 3: Hãy kiểm nghiệm lại các công thức nói trên với tuỳ ý và = ; =
HĐ3: . 
HĐTP1: Tính: tan(+) 
tan(-) theo tan, tan
Cho 2 nhóm hoạt động GV theo dõi các nhóm hoạt động và giúp đỡ các em khi cần thiết. Cho đại diện của nhóm lên trình bày bài giải của mình.
Đại diện các nhóm khác trao đổi, bổ sung đưa về công thức.
 Để các công thức trên có nghĩa tìm điều kiện của và ; (-); (+).
Gv tổng hợp đưa về công thức. 
HĐTP 3:Ví dụ: Tính tan 15o = ?
( Gọi HS lên giải bài tập)
Cho HS giải -> GV theo dõi và hướng dẫn, cả lớp cùng tham gia thảo luận đưa về kết đúng. 
HĐ 3: 
HĐTP 1: từ công thức cộng đối với sin và cos nếu thay 
= thì công thức thay đổi ra sao ? 
GV gọi HS đứng tại chỗ tính toán
HĐTP2: GV hỏi: tan 2 cần điều kiện gì ? 
HĐTP3: TínhCos2;sin2; tan2; Theo cos2?
 Cho học sinh thảo luận nhóm rồi đưa ra công thức. 
 GV cho học trò trình bày thảo luận vàsửa sai đưa ra công thức đúng.
HĐTP4:(phát phiếu học tập) ,cho các nhóm.
 1/Hãy tính cos4 theo cos .
 2/Tính cos.
 3/Đơn giản biểu thức :
 sincoscos2
Cho học sinh thảo luận theo nhóm. Giáo viên theo giỏi các nhóm thảo luận và giúp đỡ học sinh khi cần thiết.Cho đại diện các nhóm trình bày kết quả,các nhóm khác trao đổi thảo luận góp ý bổ sung để đưa ra kết quả đúng.
I/ Công thức cộng:
1/Công tức cộng đối với sin và cosin:
*cos()=coscos sinsin *sin()=sincos sincos
2/ Công thức cộng đối tan
*tan(+) =
= 
*Tan(-) = 
Để các công thức trên có nghĩa thì: ; ;
(+); (-) không có dạng (k z)
Ví dụ: Tính tan 15o 
 3-
=
 3 +
3. Công thức nhân đôi
cos2= cos2-sin2
 =2cos2-1.
 =1 - 2sin2
sin2= 2sincos
tan2=
 (Với tan2; tan) có nghĩa. 
Chú ý công thức hạ bậc
Sin2=
Cos2=
tan2=
Kết quả:1/ cos4= 8cos4 -8cos2 +1
 2/ cos
 3/sin.sincos2=
1/4sin 4
HĐ4: Củng cố và hướng dẫn học ở nhà:
* Cũng cố: các công thức qua giải các ví dụ.
Câu hỏi trắc nghiệm khách quan: 
 	 * Chọn phương án đúng. Với mọi ta có: 
 1/ cos( +)= cos + cos 2/cos( -)= cos coss - sinsin.
 3/cos( +)= cos coss - sinsin. 4/sin( += sincos - cossin. 
* Điền vào chỗ ..đễ được đẵng thức đúng.
1/ 2/ 
3/= .. 4/
 Hướng dẫn học ở nhà: học các công thức, đọc phần còn lại tiết sau học.làm bài tập 1;2.
 -----------------------------------˜&™------------------------------------
Ngµy02 th¸ng 01n¨m 2010
TiÕt59
CÔNG THỨC LƯỢNG GIÁC
III/Tiến trìnhbài học và các hoạt động:
*Ổn định lớp, giới thiệu: Chia lớp thành 6 nhóm.
 Kiểm tra bài cũ: HĐ1( Phát phiếu học tập cho các nhóm ).
 HĐTP1: Phiếu học tập số 1: Hãy viết công thức cộng đối với sin cosin. Làm thế nào để tính:
 cos.cos, Sin sin , sin cos theo sin, cosin của tổng , hiệu của các góc ? Từ đó đưa ra công thức biến dổi tích thành tổng.(giới thiệu bài họchom nay)
*Bài mới:
Hoạt động của HS
Hoạt động của GV
Nội dung 
Các nhóm nhận nhiệm vụ thảo luận dể tìm ra lời giải.
Đại diện nhóm trình bày kết quả của nhóm mình.Đại diện các nhóm khác trao đổi đưa về công thức đúng.
Các nhóm nhận nhiệm vụ cùng nhau thảo luận tìm ra kết quả.Đại diện các nhóm trình bày kết quả của nhóm mình,các nhóm khác cùng trao đổi góp ý đưa ra kết quả đúng.
Các nhóm nhận nhiệm vụ cùng nhau thảo luận để đưa ra công thức.Đại diện nhóm trình bày kết quả của nhóm mình. Các nhóm khác cùng tham gia ý kiến sửa sai hoặc bổ sung để đưa về công thức đúng.
Các nhóm nhận nhiệm vụ ,tiến hành tìm ra phương án của mình . Đại diện nhóm trình bày kết quả của nhóm mình. Cùng tham gia thảo luận với các nhóm khác để đưa ra kết quả đúng.
Phát phiếu học tập cho các nhóm. Theo dõi hoạt động của các nhóm,giúp đỡ học sinh khi cần thiết.
Đại diện của nhóm trình bày kết quả của nhóm mình.Đại diện các nhóm khác trao đổi góp ý, bổ sung để đưa ra công thức đúng.
HĐTP2: (khắc sâu), phát phiếu học tập số 2 cho các nhóm(chia ra 4 nhóm ,2 nhóm làm 1 câu).
1/tính:
2/tính:
Giáo viên hướng dẫn cho các nhóm làm bài .cho đại diện các nhóm trình bày kết quả của nhóm mình.cho cả lớp cùng kiểm tra đánh giá bổ sungđưa về kết quả đúng.
HĐ2:
HĐTP1:(phiếu học tập số3),phát cho các nhóm. Từ các công thức biến đổi tích thành tổngở trên .Nếu đặt 
tứclà ()thì ta được các công thức nào?
Cho các nhóm thảo luận .Đại diện nhóm trình bày kết quả ,sửa sai ,bổ sung đưa ra kết quả đúng.
Đưa ra công thức
HĐTP2(khắc sâu công thức).Phát phiếu học tập cho các nhóm ,mỗi nhóm làm 1 bài tập nhỏ sau :
Chứng minh rằng
Các nhóm thảo luận tìm ra phương án của bài toán.đại diện các nhóm trình bày kết quả của nhóm mình .cùng thảo luận ,góp ý với các nhóm khác để được lời giải đúng.
III/ Công thức biến đổi tích thành tổng và tổng thành tích :
1/ công thức biến đổi tích thanh tổng:
*cos.cos
*Sinsin = 
* sin cos= 
Ví dụ :Tính:
1. 
kq: 
2/ 
kq: 
2/Công thức biến đổi tổng thành tích:
 *cos x + cos y =.
 * cos x - cos y =
*sin x + siny =.
*sin x - siny =
*Cũng cố:rèn luyện,hướng dẫn học ở nhà: Các công thức qua giải các bài tập.
Hãy chọn phương án đúng trong các phương án đã cho: bằng
 (A) ; (B) ;(C); (D)- 
 Về học các công thức biến đổi,làm các bài tập 46(a,b);48;49;50.Tiết sau chữabài tập.
 -----------------------------------˜&™------------------------------------
Ngµy02 th¸ng 01n¨m 2010
TiÕt60
CÂU HỎI VÀ BÀI TẬP ÔN TẬP CUỐI NĂM
I Mục tiêu :
Qua bài học HS cần:
 1.Về kiến thức : Củng cố khắc sâu kiến thức về :
 -Tập hợp và các phép toán trên tập hợp.
 -Hàm số và phương trình.
 2. Về kỹ năng :
 - Thành thạo việc thực hiện các phép toán trên tập hợp.
 - Thực hiện được các bài toán liên quan đến hàm số và phương trình.
 3. Về tư duy :
 - Rèn luyện tư duy logic và lập luận có căn cứ.
 4. Về thái độ :
 - Tích cực hoạt động.
 - Cẩn thận , chính xác trong tính toán , lập luận.
II. Chuẩn bị :
 1.Học sinh : 
 - Bài cũ .
 - Bút dạ cho hoạt động cá nhân và hoạt động nhóm .
 2.Giáo viên :
 - Bảng phụ.
 - Đề bài phát cho học sinh.
III. Phương pháp :
 - Gợi mở , vấn đáp.
 - Chia nhóm nhỏ học tập.
 - Phân bậc hoạt động các nội dung học tập.
IV.Tiến trình bài học và các hoạt động :
1.Kiểm tra bài cũ :
 Lồng vào các hoạt động học tập của giờ học.
2.Nội dung bài mới:
 Hoạt động 1 : Tìm hiểu nhiệm vụ.
Đề bài tập :
 1.Cho các tập con A = [-1;1] , B = [a;b) và C = (-] của tập số thực R , trong đó a,b (a<b) và c là những số thực.
Tìm điều kiện của a và b để A B.
Tìm điều kiện của c để AB = 
Tìm phần bù của B trong R .
 a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y =x+ x – 6 .
 b) Biện luận theo m số giao điểm của (P) với đường thẳng (d) :y = 2x + m .
Cho phương trình : 2x + (k – 9)x + k + 3k + 4 = 0 (*).
Tìm k , biết rằng (*) có hai nghiệm trùng nhau .
b)Tính nghiệm gần đúng của (*) với k = - ( chính xác đến hàng phần nghìn ).
Hoạt động của HS
Hoạt động của GV
Nội dung
- Nhận bài tập.
- Đọc và nêu thắc mắc về đề bài.
- Định hướng cách giải toán.
- Dự kiến nhóm học sinh.
- Phát đề bài cho học sinh.
- Giao nhiệm vụ cho từng nhóm (mỗi nhóm 2 câu ). 
 Hoạt động 2 : Học sinh độc lập tiến hành tìm lời giải câu 1 có sự hướng dẫn , điều khiển của giáo viên.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 1 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
-Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận xét và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 1).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
 1. 
 a) a 1 và b >1 
 b) c < -1
 c) (- ; a) [b ; +)
 Hoạt động 3 : Học sinh độc lập tiến hành tìm lời giải câu 2 có sự hướng dẫn , điều khiển của giáo viên.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 2 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
- Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 2).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
2. 
b) Số giao điểm của (P) với (d) đúng bằng số nghiệm của phương trình :
 x+ x - 6 = 2x + m
hay x- x – 6 - m = 0
 = 4m + 25
 + m < -: (P) và (d ) không có điểm chung.
+ m = - : (P) và (d) có 1 điểm chung.
+ m > - (P) và (d) có 2 điểm chung.
 Hoạt động 3 : Học sinh độc lập tiến hành tìm lời giải câu 3 có sự hướng dẫn , điều khiển của giáo viên.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 3 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
-Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận xét và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 3).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
3.
 a) = -7(k+ 6k – 7)
 = 0 
 b)Khi k = - thì =42 
 phương trình có 2 nghiệm :
 x = 
 x = 
*Củng cố :
1.Qua bài các em cần thành thạo các phép toán trên tập hợp và các bài toán liên quan đến hàm số và phương trình.
Tự ôn tập và làm các bài tập ôn tập sgk / 221.
Bài tập: Cho pt : x- ( k – 3 )x – k +6 = 0 (1)
a) Khi k = -5 , hãy tìm nghiệm gần đúng của (1) (chính xác đến hàng phần chục ).
b) Tuỳ theo k , hãy biện luận số giao điểm của parabol y = x- ( k – 3 )x – k +6 với đường thẳng y = -kx + 4 .
 c) Với giá trị nào của k thì pt (1) có một nghiệm dương ? 
 -----------------------------------˜&™------------------------------------
Ngµy02 th¸ng 01n¨m 2010
TiÕt 61
KiÓm tra häc kú II
Thi theo ®Ò thi chung cña toµn khèi
Ngµy02 th¸ng 01n¨m 2010
TiÕt 62
Tr¶ bµi KiÓm tra häc kú II

Tài liệu đính kèm:

  • docGIAO AN DS 10 CB.doc