Tiết số: 85 Bài LUYỆN TẬP
I. MỤC TIÊU:
+) Kiến thức :Củng cố các công thức lượng giác
+) Kĩ năng : +) Vận dụng các công thức lượng giác và các BT đơn giản .
+) Rèn kĩ năng biến đổi các biểu thức lượng giác ; kĩ năng tính toán các biểu thức lượng giác
+) Thái độ : Rèn luyện tư duy linh hoạt , tư duy logic , tính cẩn thận .
II. CHUẨN BỊ:
GV: SGK, phấn màu .
HS: SGK , ôn tập các công thức lượng giác .
Ngày soạn : / / Tiết số: 85 Bài LUYỆN TẬP I. MỤC TIÊU: +) Kiến thức :Củng cố các công thức lượng giác +) Kĩ năng : +) Vận dụng các công thức lượng giác và các BT đơn giản . +) Rèn kĩ năng biến đổi các biểu thức lượng giác ; kĩ năng tính toán các biểu thức lượng giác +) Thái độ : Rèn luyện tư duy linh hoạt , tư duy logic , tính cẩn thận . II. CHUẨN BỊ: GV: SGK, phấn màu . HS: SGK , ôn tập các công thức lượng giác . III. TIẾN TRÌNH TIẾT DẠY: a. Oån định tổ chức: b. Kiểm tra bài cũ(5’) +) Chứng minh sin3 = 3sin – 4sin3 đáp án : sin3 = sin(2+) = sin2cos + cos2sin = 2sincoscos + (1 – 2sin2)sin = 2sincos2 + sin – 2sin3 = 2sin(1 – sin2) + sin – 2sin3 = 3sin – 4sin3 c. Bài mới: TL Hoạt động của GV Hoạt động của HS Kiến thức 12’ Hoạt động 1 : các công thức nhân đôi : GV cho HS nhắc lại các công thức nhân đôi (Đối với sin và côsin) GV giới thiệu : sin3 = 3sin – 4sin3 cos3 = 4cos3 - 3cos là các công thức nhân ba đối với sin và côsin GV cho HS làm tiếp bài b) sinsinsin= sin3 GV hướng dẫn HS làm BT áp dụng ứng với 600 Do đó = 200 , 400 = 600 – ; 800 = 600 + Sin2 = 2 sin cos Cos2= cos2 - sin2 = 2cos2 - 1 = 1 – 2 sin2 HS : sin = sincos- cossin sin = sincos+ cossin sinsin = sin2cos2- sin2cos2 Ứng dụng sin200sin400sin800 = sin200sin(600- 200)sin(600+200) =sin(3.200)= sin600 = Bài 46:Chứng minh Cos3 = 4cos3 - 3cos Ta có cos3= cos(2+) = cos2 cos - sin2 sin =(2cos2 - 1)cos - 2sincossin =2cos3 - cos - 2(1-cos2)cos = 4cos3 - 3cos b) sinsinsin= sin3 VT = sin(sin2cos2- sin2cos2) = sin(cos2 - sin3) = sin(3 – 4sin2) = (3sin - 4sin3) = sin3 7’ Hoạt động 2: chứng minh đẳng thức : GV cho HS làm BT 47 Cos100cos500cos700 = HS có thể áp dụng trực tiếp kết quả bài trên để chứng minh hoặc dùng công thức biến đổi tích thành tổng để chứng minh . HS đọc đề BT 47 Cos100 = sin800 cos500 = sin400 Cos700 = sin200 Cos100cos500cos700 = sin200 sin400 sin800 = Bài 47: a) Cos100cos500cos700 = cos100(cos1200 + cos200) =cos100 + cos100cos200 =cos100 +(cos300 + cos100) = cos300 = 10’ Hoạt động 3 : nhận dạng tam giác GV cho HS làm BT 50 trt 215 SGK HS đọc đề BT 50 Bài 50: a) sinA = cosB + cosC Để chứng minh tam giác ABC vuông tại A ta cần chứng minh điều gì ? Từ sinA = cosB + cosC ta hãy biến đổi để tìm ra một góc bằng 900 Ta lưu ý : A + B + C = = - từ A = B – C kết hợp với A + B + C = ta được B = Ta cần chứng minh ABC có một góc vuông SinA = 2sincos cosB + cosC = 2coscos = 2sincos (vì = - ) 2sincos = 2coscos 2sin(cos – cos) = 0 cos – cos = 0 (sin 0 vì 0 < < ) vì 0 < < , nên cos – cos = A = | B – C | Nếu B > C thì A = B – C B = (Vì A + B + C = ) Nếu B < C thì A = C – B C = ( vì A + B + C = ) 9’ Hoạt động 4: công thức tổng của tang GV cho HS làm BT 52 Chứng minh tan+ tan = tan– tan = GV nhận xét và hoàn thiện bài giải GV hướng dẫn HS làm bài b Từ tan– tan = Hãy áp dụng công thức trên cho các cặp góc , 2 ; 2, 3 ; ; 7 , 8 HS đọc đề BT 52 SGK 2HS lên bảng trình bày bài giải = . Bài 52 : a) tan+ tan = + = = +) tan– tan = – = = b) + + + = + + + = d) Hướng dẫn về nhà : (2’) +) Nắm chắc các công thức lượng giác +) Ôn tập thêm các công thức nhân ba , công thức cộng (trừ) của tang +) Làm các BT 48, 49 , 51, 53 trg 215 , 216 SGK BT : Tính Sn = sin3 + 3sin3 + + 3n – 1 sin3 (n nguyên , n 1) Pn = (2cos - 1)(2cos2 - 1)(2cos4 - 1) (2cos2n -1) ( n là số tự nhiên ) +) Hệ thống các kiến thức của chương , chuẩn bị cho tiết ôn tập IV. RÚT KINH NGHIỆM
Tài liệu đính kèm: