Đề cương ôn tập học kỳ II - Khối 10 môn Toán

Đề cương ôn tập học kỳ II - Khối 10 môn Toán

B‡i3: TÏm c·c gi· trị của m để c·c phương trÏnh sau cÛ nghiệm (cÛ 1 nghiệm, 2

nghiệm, cÛ nghiệm kÈp, vÙ nghiệm):

a) (m-5)x2-4mx+m-2 = 0 b) (m-2)x2+2(2m-3)x+5m-6 = 0

c) (3-m)x2-2(m+3)x+m+2 = 0. d) x26mx+22m+9m2=0

pdf 3 trang Người đăng trường đạt Lượt xem 1341Lượt tải 4 Download
Bạn đang xem tài liệu "Đề cương ôn tập học kỳ II - Khối 10 môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề cương khối ạộ ẠHọc kỳ II) Năm học: 2011 - 2012 
1 
ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II – KHỐI 10 
(Năm họcả ủộạạ – 2012) 
------------------------------------------------------------------------------------------------------------------------------------------ 
A. ĐẠỌ ỏỐả 
I - BẤỉ ĐẲỗở ỉỢỨế: 
Bài ạả Chứng minh rằng. 
1) a2 – 3a + 3 > 0 , aR, 2) a2 + b2  2ab , a, bR, 
3) a2 +3a +3 > 0 aR 4) a2 + b2 + 4  ab + 2(a +b) , a, bR 
5) a4 + 16  2a3 + 8a , aR 6) a3 + b3  ab(a+b) , a, b  0, 
7) a3b + ab3  a4 + b4 , a, bR 8) a b a b
b a
   , a, b > 0 
Bài 2: Chứng minh rằng. 
1) Cho a , b , c là độ dài ba cạnh của một tam giácằ ếựụả 
 a. a2+ b2 + c2 < 2(ab +bc +ca) 
 b. abc  (a + b – c).(b + c – a).(c + a – b) > 0 
2) Cho a + b = 1. CMR: a2 + b2 1
2
 3) Cho x + y + z = 1. CMR: 2 2 2 1
3
x y z   
Bài 3: Chứng minh rằng. 
1) 1 1 1 9
a b c a b c
  
 
 (a, b, c > 0) 2) 1 1 1a b c
bc ca ab a b c
     (a, b , c > 0) 
3) ab bc ca a b c
c a b
     (a, b, c > 0) 4) 1 1a b b a ab    a, b  1 
Bài4:.Tìm ởỉẳỗ của hàm số sau. 
1) y = (x + 5)(7 – x) với -5  x  7 2) y = (2x - 3)(10 – 3x) với 3 10
2 3
x  
Bài5:Tìm ởỉỗỗ của hàm số sau. 
1) y = 5 8
2 5
x
x



 với x ậ -5 2) y = 9
2
x
x


 với x ậ ủ 
II – HỆ BẤỉ PHƯƠỗở TRÌỗỢ ồẬế ỗỢẤỉ ựỘỉ Ẩỗ ỏỐả 
Giải các hệ bất phương trình sauả 
1) 3 5 2 1
4 1 3 2
x x
x x
  
   
 2) 4 7 8
2 3 12
x x
x x
  
   
 3) 5 2 4 5
5 4 2
x x
x x
  
   
4) 2 1 3 4
5 3 8 9
x x
x x
  
   
 5) 
1 2 2
2 3 6
4 3 2 5
x x x
x x
    

   
 6) 
6 5 2 4
6 2 4 3
3 2
x x
x x
  

 

III – DẤắ ỗỢỊ ỉỢỨế ồẬế ỗỢẤỉả 
Bài1: Lập bảng xét dấu các biểu thức sauằ 
1) 4 3( )
2 1
xf x
x



 2)   ( ) 2 3 5 1f x x x   3) 2( ) ( 2) (3 )f x x x x   4) 2 f(x)=1
3 2
x
x



Bài2: Giải các bất phương trình sau. 
1) 4 1 3
3 1
x
x
 
 

 2) 3 5
1 2 1x x

 
 3) (3 )( 2) 0
1
x x
x
 


 4) | 2 3 | |1 | 3 2 x x x     
IV - DẤắ ỉờự ỉỢỨế ồẬế ỢờỌ: 
Bài1: Xét dấu các tam thức bậc hai sau 
a) f(x) = 2x2
+5x+2 b) f(x) = 4x2
3x1 c) f(x) = 3x2
+5x+1 d) f(x) = 3x2
+x+5 
Bài2: Giải các bất phương trình sau 
Đề cương khối ạộ ẠHọc kỳ II) Năm học: 2011 - 2012 
2 
a) x2
2x+3>0 b) x2
+9>6x c) 6x2
x20 d) 1
3
x
2
+3x+6<0 
e) 
2
2
9 14 0
9 14
x x
x x
 

 
 f) 
2
2
1 0
3 10
x
x x


 
 g) 210 125
x
x



 h) 1 12
1
x x
x x
 
 

Bài3: Tìm các giá trị của m để các phương trình sau có nghiệm (có 1 nghiệm, 2 
nghiệm, có nghiệm kép, vô nghiệm): 
a) (m-5)x2-4mx+m-2 = 0 b) (m-2)x2+2(2m-3)x+5m-6 = 0 
c) (3-m)x2-2(m+3)x+m+2 = 0. d) x26mx+22m+9m2=0 
V - PHƯƠỗở ỏờỌ VÀ ĐỘ ẳỆếỢ CHUẨỗ: 
Bài1: Hai lớp ạộờ và ạộồ của một trường ỉỢừỉ đồng thời làm bài thi môn Văn theo 
cùng một đề thi, kết quả thu được như sauả 
Lớp ạộờả 
Điểm thi 5 6 7 8 9 10 Cộng 
Tần số 1 9 12 14 1 3 40 
Lớp ạộồả 
Điểm thi 6 7 8 9 Cộng 
Tần số 8 18 10 4 40 
a) Tính số trung bìnhỨ phương saiỨ độ lệch chuẩn của các bảng số liệu trênằ 
b) Nhận xét xem lớp nào học đều hơnằ 
Bài2: Điều tra tiền lương hàng tháng của ớộ công nhân ở một xưởng mayỨ ta có bảng 
phân bố tần số sauả 
Tiền lương 300 500 700 800 900 1000 Cộng 
Tần số 3 5 6 5 6 5 30 
 Tính số trung bìnhỨ phương saiỨ độ lệch chuẩn của các bảng số liệu trênằ 
VI - CUNG VÀ ởÓế ẳƯỢỗở ởỌÁế. CÔỗở ỉỢỨế ẳƯỢỗở ởỌÁếả 
Bài1: Tính  biết ả 
a) cos  = 1 b) cos  =1 c) cos  = 0 
d) sin  = 1 e) sin  =1 f) sin  = 0 
Bài2: Tính các giá trị lượng giác còn lại của cung  biếtả 
a) sin = 3
5
 và 
2
    b) cos = 4
15
 và 0
2

   
c) tan = 2 và 3
2

    d) cot = –3 và 3 2
2

    
Bài3: Tính cosủ ,sin2 ,tg2 biết: 
a) cos =  3
15
 và 
2
    b) sin = 0.6 và 3
2

    
B. HÌỗỢ ỢỌế: 
I - HỆ ỉỢỨế ẳƯỢỗở ỉụặỗở ỉờự ởỌÁế: 
Bài1: Cho tam giác ờồế, biết b = 8; c = 5; A = 600. Tính a, S, ha , R , r . 
Bài2: Cho tam giác ờồế, biết a = 7; b = 5; c = 8 . Tính S, ha , R , r . 
Bàiớả Cho tam giác ờồế có b Ị ỆỨ c Ị ớ Ứ ỏỊ 33 . Tính cạnh aằ 
BàiỆả Cho tam giác ờồế có b Ị ƠỨ c Ị Ậ Ứ C = 600. Tính cạnh aằ 
II – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ỉỢẲỗởả 
Bài1: Viết phương trình tham số và phương trình tổng quát của đường thẳng : 
a) đi qua ờ Ạớệ ủỐ và ồ Ạ-1;-5) b) đi qua M (-1; 4) và có Vỉừỉ n (4; 1) 
c) đi qua N (1; 1) và có hệ số góc k = 2 d) đi qua K (2;3) và có VTCP a =(4; 6) 
Đề cương khối ạộ ẠHọc kỳ II) Năm học: 2011 - 2012 
3 
Bài2: Viết phương trình các đường trung trực của ABC biết trung điểm các cạnh AB, 
BC, CA lần lượt là ờ (-1;-1), B (1; 9), C (9; 1). 
Bài3: Xét vị trí tương đối của mỗi cặp đt sau và tìm giao điểm Ạnếu cóỐ của chúngằ 
a) d: 2x – 5y + 3 = 0 và : 5 x + 2y – 3 = 0 b) d: 4x –10y + 1=0 và : 





t23y
t21x
c) d: 6x – 3y + 5 = 0 và : 





t23y
t5x
 d) d: 





t3y
t22x
 và : 





t46y
t56x
Bài4: Cho ABC với ờẠủỨ ủỐỨ ồẠ-1, 6), C(-5, 3). 
a) Viết phương trình các cạnh  ABC b) Viết pt đường cao ờỢ của  ABC 
c) Cmr ABC là tam giác vuông cân, từ đó suy ra diện tích ABC. 
d) Tìm toạ độ trọng tâm ởỨ trực tâm Ợằ 
Bài5: Cho A(3; 1) và ồẠ–1; 2) và đt : x – 2y + 1 = 0. Tìm tọa độ điểm ế đểả 
a) ABC cân tại ờằ b) ABC vuông tại ếằ 
Bài6: Cho hai đường thẳng d1 : x2y+5=0 và d2 :3xy=0 
a) Tìm giao điểm của d1 và d2 b) Tìm góc giữa d1 và d2 
c) Tính khoảng cách từ điểm (2;3)A đến đường thẳng d1 và d2 
III – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ỉRÒỗ: 
Bài1: Lập phương trình của đường tròn ẠếỐ trong các trường hợp sauả 
a) Có tâm ỌẠủệ-3) và đi qua ờẠ-5; 4). b) Có tâm ỌẠƠ ệ – 7) và tiếp xúc với ặxằ 
c) Có đường kính ờồ với ờẠạệ ạỐ và ồẠẬệ ƯỐằ d) Đi qua ờẠ–2; 4), B(5; 5) và ếẠƠ ệ –2). 
e) Có tâm ỌẠ–1; 2) và tiếp xúc với đường thẳng : x – 2y + 7 = 0. 
f) Có tâm thuộc đường thẳng : 2x + 7y + 1 = 0 và đi qua M(2; 1) và ỗ Ạạệ-3). 
Bài2: Cho đường tròn ẠếỐ có phương trình x2 + y2 – 4x + 6y – 12 = 0 
a) Xác định tọa độ tâm Ọ và bán kính ụ của đường tròn ẠếỐằ 
b) Tính khoảng cách từ điểm Ọ tới đường thẳng ẠdỐ có phương trình x – 3y – 1= 0. 
Bài3: Viết phương trình tiếp tuyến với đường trònả 
a) (C): x2 + y2 – 3x + 4y – 25 = 0 tại ựẠ– 1 ; 3) 
b) (C): 4x2 + 4y2 – x – 9y + 2 = 0 tại ựẠộ ệ ủỐ 
c) (C): x2 + y2 – 4x + 4y + 3 = 0 tại giao điểm của ẠếỐ với trục hoànhằ 
d) (C): x2 + y2 – 6x + 8y – 7 = 0 tại ựẠ– 1 ; 0) 
IV – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ầẳỌừ: 
Bài1: Xác định trục lớnỨ trục nhỏệ tiêu điểmệ tiêu cựệ đỉnhệ tâm saiệ Ợình chữ nhật cơ 
sởằ của elip (E) có phương trình sau: 
a) 
2 2
1
25 9
x y
  b) 4x2+9y2= 36 c) x2+4y2= 4 d) 4x2+4y2= 16 
Bài2: Viết phương trình chính tắc của elip ẠầỐ trong mỗi trường hợp sauả 
a) Độ dài trục nhỏ bằng ạủ và có tiêu cự bằng ạƠệ 
b) Tiêu điểm F2(12;0) và điểm M(13;0) nằm trên elipằ 
c) Độ dài trục lớn bằng ủƠ và tỉ số c
a
 = 
5
13
; d) Tiêu điểm ẩ1(6;0) và tỉ số c
a
 = 
2
3
. 
e) Độ dài trục lớn bằng ạộ và tiêu cự bằng Ơệ 
f) Một tiêu điểm ẩ1(2;0) và độ dài trục lớn bằng ạộệ 
g) Đi qua hai điểm ựẠạệộỐ và ỗẠ 3
2
;1); k) Độ dài trục lớn bằng ỘỨ tâm sai 7
4
; 
h) Tiêu điểm ẩ1(4;0), F2(4;0), tâm sai e = 23 ; 

Tài liệu đính kèm:

  • pdfDe cuong on tap hoc ky II lop 10.pdf