Câu 3. parabol y= 3x2 -4x+1 có bề lõm.
A. quay lên trên B.Quay xuống dưới C.Quay sang trái D.Quay sang phải.
Câu 4. Tập hợp A={1,5,7,9} có bao nhiêu phần tử.
A. Vô số B. 5 C. 1 D. 4
Câu 5. Cho tập P=[-3 ;2) và B= (1 ;5] khi đó A B:
A. [-3 ;1) B.[-3 ;5] C. (1,2) D. (2 ;5)
Câu 6. parabol y= 8x2 -4x-2 giao với trục hoành suy ra :
A. x=0 B.y=0 C. x=-2 D. y=-2
Họ và tên:.
Lớp ..Trường THPT số 3 Văn Bàn
Đề kiểm tra 15’- Đại Số 10 - Tiết 14.
Đề 1.
Câu 1: Tọa độ đỉnh của parabol y=ax+bx+c (a ≠ 0) là
A. I = ; B.I = ; C. I = ; D. I= ;
Câu 2: Trục đối xứng của parabol y=ax+bx+c (a ≠ 0) là
A. y = B. x = C. y = D. x =
Câu 3. parabol y= 3x-4x+1 có bề lõm.
A. quay lên trên B.Quay xuống dưới C.Quay sang trái D.Quay sang phải.
Câu 4. Tập hợp A={1,5,7,9} có bao nhiêu phần tử.
A. Vô số B. 5 C. 1 D. 4
Câu 5. Cho tập P=[-3 ;2) và B= (1 ;5] khi đó A Ç B:
A. [-3 ;1) B.[-3 ;5] C. (1,2) D. (2 ;5)
Câu 6. parabol y= 8x-4x-2 giao với trục hoành suy ra :
A. x=0 B.y=0 C. x=-2 D. y=-2
Câu 7. Tập xác định của hàm số y = là
A.D=\{1} B.D=\{-1} C.D=\{-2} B.D=\{-3}
Câu 8. Tập xác định của hàm số y = là :
A.D=\{2} B.D=\{-2} C.D= [-3 ; + ¥ ) D. D = [-3 ;2) È (2 ;+¥)
Họ và tên:.
Lớp ..Trường THPT số 3 Văn Bàn
Đề kiểm tra 15’- Đại Số 10 - Tiết 14.
Đề 2.
Câu 1: Tọa độ đỉnh của parabol y=ax+bx+c (a ≠ 0) là
A.I= ; B. I = ; C. I = ; D. I = ;
Câu 2: Trục đối xứng của parabol y=ax+bx+c (a ≠ 0) là
A. x = B.y = C. y = D. x =
Câu 3. parabol y= -3x-4x+1 có bề lõm.
A. quay lên trên B.Quay xuống dưới C.Quay sang trái D.Quay sang phải.
Câu 4. Tập hợp A={1,5,7,8,9} có bao nhiêu phần tử.
A. Vô số B. 5 C. 1 D. 4
Câu 5. Cho tập P=[-3 ;2) và B= (1 ;7] khi đó A È B:
A. [-3 ;1) B.[-3 ; 7] C. (1,2) D. (2 ;5)
Câu 6. parabol y= 8x-4x-2 giao với trục tung suy ra :
A. x=0 B.y=0 C. x = -2 D.y = -2
Câu 7. Tập xác định của hàm số y = là
A.D=\{1} B.D=\{-1} C.D=\{-2} D.D=\{-3}
Câu 8. Tập xác định của hàm số y = là :
A.D=\{2} B.D=\{-2} C.D= [-3 ; + ¥ ) D. D = [-3 ;3) È (3 ;+¥)
Đáp án đề 1
1.A
2.B
3.A
4.D
5.C
6.B
7.A
8.D
Đáp án đề 2
1.D
2.A
3.B
4.B
5.B
6.A
7.C
8.
Duyệt của tổ chuyên môn Giáo viên ra đề
Nguyễn Giang Biên
Tài liệu đính kèm: