Giáo án Đại số 10 cơ bản - Trường THPT Nguyễn Xuân Ôn

Giáo án Đại số 10 cơ bản - Trường THPT Nguyễn Xuân Ôn

CHƯƠNG I: MỆNH ĐỀ - TẬP HỢP

§1. MỆNH ĐỀ

I.Mục đích yêu cầu:

Thông qua bài học này học sinh cần:

1. Về kiến thức:

-HS biết thé nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.

-Biết ký hiệu phổ biến và ký hiệu tồn tại .

-Biết được mệnh đề kéo theo và mệnh đề tương đương.

-Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận.

 2. Về kỹ năng:

- Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính đúng sai của một mệnh đề trong những trường hợp đơn giản.

- Nêu được mệnh đề kéo theo và mệnh đề tương đương.

- Biết lập được mệnh đề đảo của một mệnh đề cho trước.

 

doc 150 trang Người đăng trường đạt Lượt xem 1373Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Đại số 10 cơ bản - Trường THPT Nguyễn Xuân Ôn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 CHƯƠNG I: MỆNH ĐỀ - TẬP HỢP
§1. MỆNH ĐỀ
I.Mục đích yêu cầu:
Thông qua bài học này học sinh cần:
Về kiến thức:
-HS biết thé nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.
-Biết ký hiệu phổ biến và ký hiệu tồn tại .
-Biết được mệnh đề kéo theo và mệnh đề tương đương.
-Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận.
 2. Về kỹ năng:
- Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính đúng sai của một mệnh đề trong những trường hợp đơn giản.
- Nêu được mệnh đề kéo theo và mệnh đề tương đương.
- Biết lập được mệnh đề đảo của một mệnh đề cho trước.
3. Về tư duy: Phát triển tư duy trừu tượng, tư duy khái quát hóa, tư duy lôgic,
4. Về thái độ: Học sinh có thái độ nghiêm túc, say mê trong học tập, biết quan sát và phán đoán chính xác.
II. Chuẩn bị của GV và HS:
GV: Giáo án, phiếu học tập, câu hỏi trắc nghiệm, 
HS: Đọc và soạn bài trước khi đến lớp, bảng phụ,
III. Phương pháp dạy học: 
Gợi mở, vấn đáp đan xen các hoạt động nhóm.
IV. Tiến trình bài học và các hoạt động: Bài học tiến hành trong 2 tiết
Tiết 1:
A. Caïc tçnh huäúng hoüc táûp:
TH1: Giaïo viãn nãu váún âãö bàòng caïc vê duû; GQVÂ qua caïc hoaût âäüng
HÂ1: Giaïo viãn nãu vê duû nhàòm âãø hoüc sinh nháûn biãút khaïi niãûm mãûnh âãö
HÂ2: Xáy dæûng mãûnh âãö chæïa biãún cuía mãûnh âãö thäng qua vê duû.
HÂ3:Xáy âæûng mãûnh âãö phuí âënh cuía mãûnh âãö thäng qua vê duû. 
HÂ4: Hçnh thaình vaì phaït biãøu mãûnh âãö keïo theo. Tênh âuïng - sai cuía mãûnh âãö P Þ Q
HÂ5: Phaït biãøu âënh lê P Þ Q dæåïi daûng âiãöu kiãûn cáön, âiãöu kiãûn âuí.
HÂ6: Vê duû minh hoüa.
HÂ7: Cuíng cäú kiãún thæïc 
B. Tiến trình tiết học:
Ổn định lớp: Chia lớp thành 6 nhóm.
Bài mới:
I. MỆNH ĐỀ. MỆNH ĐỀ CHỨA BIẾN:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
TH1.Qua ví dụ nhận biết khái niệm.
HĐ1:
GV: Nhìn vào hai bức tranh (SGK trang 4), hãy đọc và so sánh các câu bên trái và các câu bên phải.
Xét tính đúng, sai ở bức tranh bên trái.
Bức tranh bên phải các câu có cho ta tính đúng sai không?
GV: Các câu bên trái là những khẳng định có tính đúng sai:
Phan-xi-păng là ngọn núi cao nhất Việt Nam là Đúng.
là Sai.
Các câu bên trái là những mệnh đề.
GV: Các câu bên phải không thể cho ta tính đúng hay sai và những câu này không là những mệnh đề.
GV: Vậy mệnh đề là gì?
GV: Phát phiếu học tập 1 cho các nhóm và yêu cầu các nhóm thảo luận đề tìm lời giải.
GV: Gọi HS đại diện nhóm 1 trình bày lời giải.
GV: Gọi HS nhóm 2 nhận xét và bổ sung thiếu sót (nếu có).
GV: Nêu chú ý:
Các câu hỏi, câu cảm thán không là mệnh đề vì nó không khẳng định được tính đúng sai.
HS: Quan sát tranh và suy nghĩ trả lời câu hỏi
HS: Rút ra khái niệm:
Mệnh đề là những khẳng định có tính đúng hoặc sai.
Một mệnh đề không thể vừa đúng, vừa sai.
HS: Suy nghĩ và trình bày lời giải...
HS: Nhận xét và bổ sung thiếu sót (nếu có).
1.Mệnh đề:
Mỗi mệnh đề phải hoặc đúng hoặc sai.
Một mệnh đề không thể vừa đúng, vừa sai.
Phiếu HT 1: Hãy cho biết các câu sau, câu nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề thì hãy xét tính đúng sai.
a)Hôm nay trời lạnh quá!
b)Hà Nội là thủ đô của Việt Nam.
c)3 chia hết 6;
d)Tổng 3 góc của một tam giác không bằng 1800;
e)Lan đã ăn cơm chưa?
HĐ 2: Hình thành mệnh đề chứa biến thông qua các ví dụ.
GV: Lấy ví dụ và yêu cầu HS suy nghĩ và trả lời.
GV: Với câu 1, nếu ta thay n bởi một số nguyên thì câu 1 có là mệnh đề không?
GV: Hãy tìm hai giá trị nguyên của n để câu 1 nhận được một mệnh đề đúng và một mệnh đề sai.
GV: Phân tích và hướng dẫn tương tự đối với câu 2.
GV: Hai câu trên: Câu 1 và 2 là mệnh đề chứa biến.
HS: Câu 1 và 2 không là mệnh đề vì ta chưa khẳng định được tính đúng sai.
HS: Nếu ta thay n bởi một số nguyên thì câu 1 là một mệnh đề.
HS: Suy nghĩ tìm hai số nguyên để câu 1 là một mệnh đề đúng, một mệnh đề sai.
Chẳng hạn:
Khi n = 3 thì câu 1 là một mệnh đề đúng.
Khi n = 6 thì câu 1 là một mệnh đề sai.
2.Mệnh đề chứa biến:
Ví dụ 1: Các câu sau có là mệnh đề không? Vì sao?
Câu 1: “n +1 chia hết cho 2”;
Câu 2: “5 – n = 3”.
II. PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 3: Xây dựng mệnh đề phủ định.
GV: Lấy ví dụ để hình thành mệnh đề phủ định.
GV: Theo em ai đúng, ai sai?
GV: Nếu ta ký hiệu P là mệnh đề Minh nói.
Mệnh đề Hùng nói “không phải P” gọi là mệnh đề phủ định của P, ký hiệu: 
GV: Để phủ định một mệnh đề, ta thêm (hoặc bớt) từ “không” (hoặc từ “không phải”) vảotước vị ngữ của mệnh đề đó.
GV: Chỉ ra mối liên hệ của hai mệnh đề P và ?
GV: Lấy ví dụ và yêu cầu HS suy nghĩ tìm lời giải.
GV: Gọi HS nhóm 3 trình bày lời giải, HS nhóm 4 và 5 nhận xét bổ sung (nếu có).
GV: Cho điểm HS theo nhóm.
HS: Suy nghĩ và trả lời câu hỏi 
HS: Chú ý theo dõi 
HS: Nếu mệnh đề P thì và ngược lại.
HS: Thảo luận theo nhóm tìm lời giải và ghi vào bảng phụ.
HS: Trình bày lời giải 
HS: Nhận xét lời giải và bổ sung thiếu sót (nếu có).
Ví dụ: Hai bạn Minh và Hùng tranh luận:
Minh nói: “2003 là số nguyên tố”
Hùng nói: “2003 không phải số nguyên tố”
Bài tập: Hãy phủ định các mệnh đề sau:
P: “là số hữu tỉ”
Q:”Hiệu hai cạnh của một tam giác nhỏ hơn cạnh thứ ba”
Xét tính đúng sai của các mệnh đề trên và mệnh đề phủ định của chúng.
III. MỆNH ĐỀ KÉO THEO:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 4: Hình thành và phát biểu mệnh đề kéo theo, chỉ ra tính đúng sai của mệnh đề kéo theo.
GV: Cho HS xem SGK để rút ra khái niệm mệnh đề kéo theo.
GV: Mệnh đề kéo theo ký hiệu:
GV: Mệnh đề còn được phát biểu là: “P kéo theo Q” hoặc “Từ P suy ra Q”
GV: Nêu ví dụ và gọi một HS nhóm 6 nêu lời giải.
GV: Gọi một HS nhóm 1 nhận xét, bổ sung (nếu có).
GV: Bổ sung thiếu sót (nếu có) và cho điểm HS theo nhóm.
HĐ 5:
GV: Vậy mệnh đề sai khi nào? Và đúng khi nào?
HĐ6:
GV: Các định lí toán học là những mệnh đề đúng và thường phát biểu dưới dạng , ta nói:
P là giả thiếu, Q là kết luận của định lí, hoặc
P là điều kiện đủ để có Q hoặc
Q là điều kiện cần để có P.
GV: Phát phiếu HT 2 và yêu cầu HS các nhóm thảo luận tìm lời giả.
GV: Gọi HS đại diện nhóm 3 trình bày lời giải.
GV: Gọi HS nhóm 2 nhận xét và bổ sung thiếu sót (nếu có).
GV: Bổ sung (nếu cần) và cho điểm HS theo nhóm.
GV: Lấy ví dụ minh họa đối với những định lí không phát biểu dưới dạng “Nếu thì .”
HS: Mệnh đề “ Nếu P thì Q” được gọi là mệnh đề kéo theo.
HS: Phát biểu mệnh đề : “Nếu ABC là tam giác đều thì tam giác ABC có ba đường cao bằng nhau”
Mệnh đề là một mệnh đề đúng.
HS: Suy nghĩ và trả lời câu hỏi
Mệnh đề chỉ sai khi P đúng và Q sai. Đúng trong các trường hợp còn lại.
HS: Suy nghĩ và thảo luận theo nhóm để tìm lời giải.
HS: Trình bày lời giải 
HS: Nhận xét và bổ sung lời giải của bạn (nếu có).
*Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, ký hiệu: 
Ví dụ: Từ các mệnh đề:
P: “ABC là tam giác đều”
Q: “Tam giác ABC có ba đường cao bằng nhau”.
Hãy phát biểu mệnh đề và xét tính đúng sai của mệnh đề .
*Mệnh đề PÞQ chỉ sai khi P đúng và Q sai.
*Nếu P đúng và Q đúng thì PÞQ đúng.
*Nếu Pđúng và Q sai thì PÞQ sai.
Định lý toán học thường có dạng: “Nếu P thì Q”
P: Giả thiết, Q; Kết luận
Hoặc P là điều kiện đủ để có Q, Q là điều kiện cần để có P.
*Phiếu HT 2:
Nội dung;
Cho tam giác ABC. Từ mệnh đề:
P:”ABC là tram giác cân có một góc bằng 600”
Q: “ABC là một tam giác đều”.
Hãy phát biểu định lí . Nêu giả thiếu, kết luận và phát biểu định lí này dưới dạng điêù kiện cần, điều kiện đủ.
IV. MỆNH ĐỀ ĐẢO – HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG:
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
TH: GV nêu vấn đề bằng các ví dụ; giải quyết vấn đề qua các hoạt động:
HĐ 1:
GV: Phát phiếu HT 1 và cho HS thảo luận để tìm lời giải theo nhóm sau đó gọi HS đại diện nhóm 6 trình bày lời giải.
GV: Gọi HS nhóm 5 nhận xét và bổ sung thiếu sót (nếu có).
GV: Bổ sung thiếu sót (nếu cần) và cho điểm HS theo nhóm.
GV:- Mệnh đề được gọi là mệnh đề đảo của mệnh đề .
-Mệnh đề đảo của một mệnh đề không nhất thiết là đúng.
HS: Thảo luận thoe nhóm để tìm lời giải
HS: Trình bày lời giải:
a):”Nếu ABC là một tam giác cân thì ABC là một tam giác đều”, đây là một mệnh đề sai.
b):”Nếu ABC là một tam giác có ba góc bằng nhau thì ABC là một tam giác đều”, đây là một mệnh đề đúng.
Mệnh đề đảo:
Phiếu HT 1:
Nội dung: Cho tam giác ABC. Xét mệnh đề sau:
a)Nếu ABC là một tam giác đều thì ABC là một tam giác cân.
b)Nếu ABC là một tam giác đều thì ABC là một tam giác có ba góc bằng nhau.
Hãy phát biểu các mệnh đề tương ứng và xét tính đúng sai của chúng.
HĐ 2: Hình thành khái niệm hai mệnh đề tương đương.
GV: Cho HS nghiên cứu ở SGK và hãy cho biết hai mệnh đề P và Q tương đương với nhau khi nào?
GV: Nêu ký hiệu hai mệnh đề tương đương: PQ và nêu các cách đọc khác nhau:
+P tương đương Q;
+P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q, 
HS: Nhgiên cứu và trả lời câu hỏi: Nếu cả hai mệnh đề và đều đúng ta nói P và Q là hai mệnh đề tương đương.
V. KÝ HIỆU VÀ :
TG
Hoạt động của GV
Hoạt động của HS
Nội dung
HĐ 4: Dùng ký hiệu và để viết các mệnh đề và ngược lại thông qua các ví dụ:
GV: Yêu cầu HS xem ví dụ 6 SGK trang 7 và xem cách viết gọn của nó.
GV: Ngược lại, nếu ta có một mệnh đề viết dưới dạng ký hiệuthì ta cũng có thể phát biểu thành lời.
GV: Lấy ví dụ áp dụng và yêu cầu HS phát biểu thành lời mệnh đề. 
GV:Gọi HS nhận xét và bổ sung (nếu cần).
GV: Gọi 1 HS đọc nội dung ví dụ 7 SGK và yêu cầu HS cả lớp xem cách dùng ký hiệu để viết mệnh đề. 
GV: Lấy ví dụ để viết mệnh đề bằng cách dùng ký hiệu và yêu cầu HS viết mệnh đề bằng ký hiệu đó.
GV: Nhận xét và bổ sung (nếu cần).
HS: Suy nghĩ và tìm lời giải 
LG: Bình phương mọi số nguyên đều lớn hơn hoặc bằng không.
Đây là một mệnh đề đúng.
HS: Suy nghĩ và viết mệnh đề bằng ký hiệu :
HS: Nhận xét và bổ sung (nếu có)
Ví dụ1: Phát biểu thành lời mệnh đề sau:
Mệnh đề này đúng hay sai?
Ví dụ:Dùng ký hiệu Có ít nhất một số nguyên lớn hơn 1.
HĐ 5: Lập mệnh đề phủ định của một mệnh đề có ký hiệu 
GV: Gọi HS nhắc lại mối liên hệ giữa mệnh đề P và mệnh đề phủ định của P là .
GV: Yêu cầu HS xem nội dung ví dụ 8 trong SGK và GV viết mệnh đề P và lên bảng.
GV: Yêu cầu HS dùng ký hiệu để viết 2 mệnh đề P và 
GV: Gọi HS nhận xét và bổ sung (nếu cần).
GV: Phát phiếu HT 2 và cho HS thảo luận theo nhóm để tìm lời giải sau đó gọi một HS đại diện nhóm 2 trình bày lời giải.
GV: Gọi HS nhận xét và bổ sung (nếu cần) rồi cho điểm HS theo nhóm.
HS: Thảo luận theo nhóm để tìm lời giải.
HS đại diện nhóm 2 trình bày lời giải
HS: Nhận xét và bổ sung (nếu có).
Ví dụ 8:
Ta có: P:”Mọi số thực đều có bình phương khác 1”.
:”Tồn tại một số thực mà bình phương bằng 1”
*Phiếu HT 2:
Nội dung: Cho mệnh đề:
P:”Mọi số nhân với 1 đều bằng 0”
Q: “Có một số cộng với 1 bằng 0”
a)Hãy phát biểu mệnh đề phủ định của các mệnh đề trên.
b) Dùng ký hiệuđể viết mệnh đề P, Q và các mệnh đề phủ định của nó. Cho biết các mệnh đề đó, mệnh đề nào đúng, mệnh đề nào sai? 
*Củng cố:
*Hướng dẫn học ở nhà: ...  thành tích :
1/ công thức biến đổi tích thanh tổng:
*cos.cos
*sinsin= 
*sin.cos= 
Ví dụ :Tính:
1. 
kq: 
2/ 
kq: 
2/Công thức biến đổi tổng thành tích:
 *cos x + cos y =.
 * cos x - cos y =
*sin x + siny =.
*sin x - siny =
*Củng cố:rèn luyện,hướng dẫn học ở nhà: Các công thức qua giải các bài tập.
Hãy chọn phương án đúng trong các phương án đã cho: bằng
 (A) ; (B) ;(C); (D)- 
 Về học các công thức biến đổi,làm các bài tập 46(a,b);48;49;50.Tiết sau chữabài tập.
 -----------------------------------˜&™------------------------------------
Tiết 60 KIỂM TRA 1 TIẾT
I. MỤC TIÊU:
 1. Về kiến thức:
	- Kiểm tra kiến thức chương 5, qua đó xếp loại, đánh giá học sinh
	- Học sinh giải thành thạo các dạng bài tập cơ bản của chương và làm quen với một số bài tập nâng cao
 2. Về kỹ năng:
	- Giải thành thạo các bài tập cơ bản của chương, có kỹ năng trình bày bài kiểm tra
 3. Về tư duy:
	- Rèn luyện và phát triển tư duy toán học 
 4. Về thái độ:
	- Cẩn thận, chính xác
II. ĐỀ RA:
	Câu 1. a) Cho Tính .
	 b) Cho tính giá trị biểu thức:
	.
	Câu 2. a) Rút gọn biểu thức:
 .
	 b) Chứng minh rằng biểu thức sau không phụ thuộc giá trị của x:
Tiết 61,62: ÔN TẬP CUỐI NĂM
I. MỤC TIÊU:
 1.Về kiến thức : Củng cố khắc sâu kiến thức về :
 -Tập hợp và các phép toán trên tập hợp.
 -Hàm số và phương trình.
 2. Về kỹ năng :
 - Thành thạo việc thực hiện các phép toán trên tập hợp.
 - Thực hiện được các bài toán liên quan đến hàm số và phương trình.
 3. Về tư duy :
 - Rèn luyện tư duy logic và lập luận có căn cứ.
 4. Về thái độ :
 - Tích cực hoạt động.
 - Cẩn thận , chính xác trong tính toán , lập luận.
II. CHUẨN BỊ:
 1. Giáo viên :
 - Bảng phụ.
 - Đề bài phát cho học sinh.
 2. Học sinh : 
 - Bài cũ .
 - Bút dạ cho hoạt động cá nhân và hoạt động nhóm .
 3. Phương pháp :
 - Gợi mở , vấn đáp.
 - Chia nhóm nhỏ học tập.
 - Phân bậc hoạt động các nội dung học tập.
IV. TIẾN TRÌNH BÀI HỌC:
 1.Kiểm tra bài cũ :
 Lồng vào các hoạt động học tập của giờ học.
 2.Nội dung bài mới:
 Hoạt động 1 : Tìm hiểu nhiệm vụ.
Đề bài tập :
 1.Cho các tập con A = [-1;1] , B = [a;b) và C = (-] của tập số thực R , trong đó a,b (a<b) và c là những số thực.
Tìm điều kiện của a và b để A B.
Tìm điều kiện của c để AB = 
Tìm phần bù của B trong R .
 a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y =x+ x – 6 .
 b) Biện luận theo m số giao điểm của (P) với đường thẳng (d) :y = 2x + m .
Cho phương trình : 2x + (k – 9)x + k + 3k + 4 = 0 (*).
Tìm k , biết rằng (*) có hai nghiệm trùng nhau .
b)Tính nghiệm gần đúng của (*) với k = - ( chính xác đến hàng phần nghìn ).
Hoạt động của HS
Hoạt động của GV
Nội dung
- Nhận bài tập.
- Đọc và nêu thắc mắc về đề bài.
- Định hướng cách giải toán.
- Dự kiến nhóm học sinh.
- Phát đề bài cho học sinh.
- Giao nhiệm vụ cho từng nhóm (mỗi nhóm 2 câu ). 
 Hoạt động 2 : Học sinh độc lập tiến hành tìm lời giải câu 1 có sự hướng dẫn , điều khiển của giáo viên
.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 1 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
-Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận xét và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 1).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
 1. 
 a) a 1 và b >1 
 b) c < -1
 c) (- ; a) [b ; +)
 Hoạt động 3 : Học sinh độc lập tiến hành tìm lời giải câu 2 có sự hướng dẫn , điều khiển của giáo viên.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 2 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
- Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 2).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
2. 
b) Số giao điểm của (P) với (d) đúng bằng số nghiệm của phương trình :
 x+ x - 6 = 2x + m
hay x- x – 6 - m = 0
 = 4m + 25
 + m < -: (P) và (d ) không có điểm chung.
+ m = - : (P) và (d) có 1 điểm chung.
+ m > - (P) và (d) có 2 điểm chung.
 Hoạt động 3 : Học sinh độc lập tiến hành tìm lời giải câu 3 có sự hướng dẫn , điều khiển của giáo viên.
Hoạt động của HS
Hoạt động của GV
Nội dung
-Đọc đề bài câu 3 và nghiên cứu cách giải .
- Độc lập tiến hành giải toán.
- Thông báo kết quả cho giáo viên khi đã hoàn thành nhiệm vụ .
-Giao nhiệm vụ và theo dõi hoạt động của học sinh , hướng dẫn khi cần thiết.
- Nhận xét và chính xác hoá kết quả của 1 hoặc 2 học sinh hoàn thành nhiệm vụ đầu tiên (nhóm 3).
- Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh. Chú ý các sai lầm thường gặp.
- Đưa ra lời giải (ngắn gọn nhất) cho cả lớp .
3.
 a) = -7(k+ 6k – 7)
 = 0 
 b)Khi k = - thì =42 
 phương trình có 2 nghiệm :
 x = 
 x = 
*Củng cố :
1.Qua bài các em cần thành thạo các phép toán trên tập hợp và các bài toán liên quan đến hàm số và phương trình.
Tự ôn tập và làm các bài tập ôn tập sgk / 221.
Bài tập: Cho pt : x- ( k – 3 )x – k +6 = 0 (1)
a) Khi k = -5 , hãy tìm nghiệm gần đúng của (1) (chính xác đến hàng phần chục ).
b) Tuỳ theo k , hãy biện luận số giao điểm của parabol y = x- ( k – 3 )x – k +6 với đường thẳng y = -kx + 4 .
 c) Với giá trị nào của k thì pt (1) có một nghiệm dương ? 
 -----------------------------------˜&™------------------------------------
I. Phần trắc nghiệm: 
Câu 1: Số -2 thuộc tập nghiệm của bất phương trình:
A. 2x + 1 > 1 - x	B. (2x + 1)(1 – x) < x2	C. 	D. (2 - x)(x +2)2 < 0
Câu 2: Cho bất phương trình 2x + 4y < 5 có tập nghiệm là S, ta có:
A. 	B. 	C. 	D. 
Câu 3: Tập nghiệm S của bất phương trình: là:
A. 	B. 
C. 	D. 
Câu 4: Bất phương trình có tập nghiệm là:
A. 	B. 	C. 	D. 
Câu 5: Tập nghiệm S của bất phương trình: là:
A. 	B. 	C. 	D. 
Câu 6: Điều tra số con của mỗi gia đình trong khu phố A, nhân viên điều tra ghi được bảng sau:
Giá trị (số con)
0
1
2
3
4
5
Tần số (số gia đình)
10
11
24
12
2
1
Mốt của số con trong các gia đình là:
A. 0	B. 2	C. 3	D. 5
Câu 7: Điều tra số con của mỗi gia đình trong khu phố A, nhân viên điều tra ghi được bảng sau:
Giá trị (số con)
0
1
2
3
4
5
Tần số (số gia đình)
10
11
24
12
2
1
Số trung vị của mẫu các số con là:
A. 1,5	B. 2,5	C. 3	D. 2
Câu 8: Sin1200 bằng:
A. 	B. 	C. 	D. 
Câu 9: Với mọi góc , ta có: bằng:
A. 0	B. 	C. 	D. 
Câu 10: Cho tam giác ABC có AB = 4, BC = 7, CA = 9. Giá trị cosA là:
A. 	B. 	C. 	D. 
Câu 11: Cho 2 điểm và . Giá trị của là:
A. 4	B. 	C. 	D. 8
Câu 12: Trong tam giác ABC có AB = 9; AC = 12; BC = 15. Khi đó đường trung tuyến AM của tam giác có độ dài:
A. 8	B. 10	C. 9	D. 7,5
Câu 13: Cho hai điểm và , phương trình tham số của đường thẳng AB là:
A. 	B. 	C. 	D. 
Câu 14: Cho phương trình tham số của đường thẳng (d): . Trong các phương trình sau, phương trình nào là phương trình tổng quát của đường thẳng (d):
A. 	B. 	C. 	D. 
Câu 15: Phương trình nào sau đây là phương trình đường tròn:
A. 	B. 
C. 	D. 
Câu 16: Cho elip (E) có phương trình chính tắc: và cho các mệnh đề:
(I) (E) có trục lớn bằng 1;	(II) (E) có trục nhỏ bằng 4;
(III) (E) có tiêu điểm ;	(IV) (E) có tiêu cự bằng .
Tìm mệnh đề đúng trong các mệnh đề sau:
A. (I)	B. (II) và (IV)	C. (I) và (III)	D. (IV)
II. Phần tự luận: 
1)Đại số: 
Câu 1:
 Giải bất phương trình:
Câu 2: Cho các số liệu thống kê:
111
112
112
113
114
114
115
114
115
116
112
113
113
114
115
114
116
117
113
115
a) Lập bảng phân bố tần số - tần suất;
b) Tìm số trung bình, trung vị, mốt.
Câu 3: (1 điểm) Chứng minh: 
2) Hình học: 
Trong mặt phẳng tọa độ Oxy cho hai điểm, điểm và:
a) Chứng minh rằng vuông tại O;
b) Tính độ dài và viết phương trình đường cao OH của ;
c) Viết phương trình đường tròn ngoại tiếp .
-----------------------------------------------
----------- HẾT ----------
I. Phần Trắc Nghiệm:
1. aBcd
2. abCd
3. Abcd
4. abcD
5. aBcd
6. aBcd
7. abcD
8. abcD
9. Abcd
10. Abcd
11. abcD
12. abcD
13. abCd
14. Abcd
15. abcD
16. abcD
II. Phần Tự Luận:
Đáp án
Điểm
1)Đại số:
Câu 1: Giải bất phương trình: 
Bảng xét dấu:
x
 -2 -1 5 
x2 + 3x + 2
 + 0 - 0 + | +
- x + 5
 + | + | + 0 -
VT
 + 0 - 0 + || -
Vậy tập nghiệm của bất phương trình là: 
Câu 2: 
a) Bảng phân bố tần số - tần suất:
Giá trị x
Tần số 
Tần suất (%)
111
112
113
114
115
116
117
1
3
4
5
4
2
1
5
15
20
25
20
10
5
 n=20
100
b) Số trung bình:
=113,9
*Số trung vị: Do kích thước mẫu n = 20 là một số chẵn nên số trung vị là trung bình cộng của hai giá trị đứng thứ đó là 114 và 114.
Vậy 
*Mốt: Do giá trị 114 có tần số lớn nhất là 5 nên ta có: .
Câu 3: Chứng minh:
2) Hình học:
Vậy tam giác OAB vuông tại O.
b) Tính độ dài và viết phương trình đường cao OH:
Do tam giác OAB vuông tại O nên ta có:
OH.AB = OA.OB 
Do nên đường cao OH nhận vectơ làm vectơ pháp tuyến, ta có:
Vậy phương trình của đường cao OH đi qua O(0;0) và nhận làm vectơ pháp tuyến là:
(x – 0) - (y – 0) = 0
c) Viết phương trình đường tròn ngoại tiếp tam giác OAB:
Do tam giác OAB vuông tại O, nên tâm của đường tròn ngoại tiếp tam giác OAB là trung điểm I của cạnh AB, ta có:
Bán kính đường tròn ngoại tiếp tam giác OAB là: 
Vậy phương trình đường tròn ngoại tiếp tam giác OAB là:
0,25đ
0,25đ
0,75đ
0,25đ
0,5đ
0,25đ
0,5đ
0,25đ
0,5đ
0,5đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
*Củng cố:
*Hướng dẫn học ở nhà:
-Xem và học lý thuyết theo SGK.
-Soạn phần lý thuyết còn lại của bài.
-Làm các bài tập 1, 2, 3 SGK trang 9.
BÀI TẬP TRẮC NGHIỆM
Câu 1. Mỗi câu sau, câu nào là mệnh đề:
(a)Nếu n là một số tự nhiên thì n lớn hơn không.
(b) Thời tiết hôm nay đẹp quá!
(c)Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền có độ dài bằng một nửa độ dài cạnh huyền.
(d)Hôn nay học môn gì vậy?
Câu 2. Xét phương trình bậc hai: ax2+bx +c = 0 (1)
Xác định tính đúng – sai của mỗi mệnh đề sau:
(a)Nếu ac <0 thì phương trình (1) có hai nghiệm phân biệt.
(b)Nếu phương trình (1) có hai nghiệm phân biệt thì ac <0;
(c)Nếu a + b + c = 0 thì phương trình (1) có một nghiệm là 1, nghiệm còn lại bằng ;
(d) Nếu phương trình (1) có nghiệm là 1 thì a + b + c =0;
(e) Nếu phương trình (1) có hai nghiệm x1 và x2 thì x1 + x2 = , x1x2 = .
Câu 3. Cho mệnh đề P: “Tổng các góc trong của một tứ giác bằng 3600”. Hãy chọn mệnh đề phủ định của mệnh đề P trong các mệnh đề sau:
(a)Tổng cacs góc trong của một tứ giác lớn hơn hoặc bằng 3600;
(b) Tổng các góc trong của một tứ giác nhỏ hơn hoặc bằng 3600;
(c)Tổng các góc trong của tứ giác khác 3600;
(d) Tổng các góc trong của tứ giác lớn hơn 3600.
-----------------˜o0o™-----------------

Tài liệu đính kèm:

  • docGiao An Dai so 10 CB.doc