Giáo án Đại số và giải tích 11 cơ bản tuần 9

Giáo án Đại số và giải tích 11 cơ bản tuần 9

Câu 2: Xét trên tập xác định thì:

 A. hàm số lượng giác có tập giá trị là [-1; 1]

 B. hàm số y = sinx có tập giá trị là [-1; 1]

 C. hàm số y = tanx có tập giá trị là [-1; 1]

 D. hàm số y = cotx có tập giá trị là [-1; 1]

 

doc 12 trang Người đăng trường đạt Lượt xem 1152Lượt tải 2 Download
Bạn đang xem tài liệu "Giáo án Đại số và giải tích 11 cơ bản tuần 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TuÇn 9
Tiết ppct : 31 Ngày so¹n : 29/10/2009
Líp
Ngµy d¹y
Tªn häc sinh v¾ng
Ghi chó
11C
KIỂM TRA CHƯƠNG I
SỞ GD & ĐT H ẢI DƯƠNG
TRUNG T ÂM GDTX NAM S ÁCH
ĐỀ KIỂM TRA 1 TIẾT
Môn: ĐẠI SỐ 11 - c¬ b¶n (CHƯƠNG I)
®Ò 1
A/ PHẦN TNKQ (Mỗi câu 0,5 điểm)
Câu 1: Hàm số y = cosx ®ång biến trên đoạn nào sau đây:
 A. B. 	C. 	D. 
Câu 2: Xét trên tập xác định thì:
	A. hàm số lượng giác có tập giá trị là 	
	B. hàm số y = sinx có tập giá trị là 
	C. hàm số y = tanx có tập giá trị là 	
	D. hàm số y = cotx có tập giá trị là 
Câu 3: Hàm số có tập xác định là:
	A. 	B. 
	C. 	D. 
Câu 4: Hàm số lượng giác nào sau đây lµ hµm sè ch½n?
	A. y = sinx	B. y = cotx	C. y = tanx	D. y = cosx
Câu 5: Ph­¬ng tr×nh: cã nghiÖm lµ?
	A. B.
	C.	 D.
Câu 6: Hàm số đạt giá trị lín nhất bằng:
	A. 2 	B. -2	C. 1	D. 0
B/ PHẦN TỰ LUẬN (7 điểm)
Câu 7(1,5 điểm): Tìm tập xác định của hàm số sau: 
Câu 8: Giải các phương trình sau:
	a) (1 điểm)
	b) 	(1,5 điểm)
	c) 	(1,5 điểm)
	d) 	(1,5 điểm)
 ---------------------------------------------
 SỞ GD & ĐT H ẢI DƯƠNG
TRUNG T ÂM GDTX NAM S ÁCH
ĐỀ KIỂM TRA 1 TIẾT
Môn: ĐẠI SỐ 11 - c¬ b¶n (CHƯƠNG I)
®Ò 2
A/ PHẦN TNKQ (Mỗi câu 0,5 điểm)
Câu 1: Xét trên tập xác định thì:
	A. hàm số lượng giác có tập giá trị là 	
	B. hàm số y = cotx có tập giá trị là 
	C. hàm số y = tanx có tập giá trị là 	
	D. hàm số y = cosx có tập giá trị là 
Câu 2: Hàm số lượng giác nào sau đây lµ hµm sè ch½n?
	A. y = sinx	B. y = cosx	C. y = tanx	D. y = cotx
Câu 3: Hàm số có tập xác định là:
	A. 	B. 
	C. 	D. 
Câu 4: Ph­¬ng tr×nh: cã nghiÖm lµ?
	A. B.
	C. 	 D.
Câu 5: Hàm số đạt giá trị lín nhất bằng:
	A. 0 	B. 2	C. -3	D. 1
Câu 6: Hàm số y = sinx ®ång biến trên đoạn nào sau đây:
 A. 	B. 	C. 	D. 
B/ PHẦN TỰ LUẬN (7 điểm)
Câu 7(1,5 điểm): Tìm tập xác định của hàm số sau: 
Câu 8: Giải các phương trình sau:
	a) (1 điểm)
	b) 	 (1,5 điểm)
	c) 	 (1,5 điểm)
	d) 	 (1,5 điểm)
 ---------------------------------------------
 SỞ GD & ĐT HẢI D ƯƠNG
TRUNG TÂM GDTX NAM S ÁCH
ĐÁP ÁN-BIỂU ĐIỂM
Môn: ĐẠI SỐ 11 (KIỂM TRA 1 TIẾT CHƯƠNG I)
A/ PHẦN TNKQ (Mỗi câu 0,5 điểm)	
1
2
3
4
5
6
B
B
A
D
C
A
1
2
3
4
5
6
D
B
C
A
B
A
§Ò 1	
§Ò 2
B/ PHẦN TỰ LUẬN
Câu 7: Hàm số xác định khi : 	(0,5 điểm)
 	(1 điểm)
Câu 8: 
a) 	 	(0,25 điểm)
 	(0,75 điểm)
b) (§Æt: sinx = t,)	(0,25 điểm)
	(tháa m·n ®k )	(0,75 điểm)
	(0,5 điểm)
c) 	(1,0 điểm)
	(0,5 điểm)
d) 	(0,25 điểm)
Ta thÊy: nÕu cosx = 0 th× VT=1; VP=-2 nªn cosx=0 kh«ng tháa m·n pt trªn, 
do ®ã: cosx=0 kh«ng lµ nghiÖm ph­¬ng tr×nh. 	(0,25 điÓm)
Chia c¶ hai vÕ cña pt cho cosx¹0, ta ®­îc:
	(0,5 điểm)
	(0,5 điểm)
= = Heát = =
Những lưu ý, kiến nghị, bổ sung, sửa đổi sau tiết giảng:
 Lớp: 	 Đối tượng học sinh: 	 Nội dung
Tiết ppct : 32 Ngày so¹n : 30/10/2009
Líp
Ngµy d¹y
Tªn häc sinh v¾ng
Ghi chó
11C
LUYEÄN TAÄP VEÀ ÑAÏI CÖÔNG VEÀ ÑÖÔØNG THAÚNG
 VAØ MAËT PHAÚNG
I. Muïc tieâu : 
 * Kieán thöùc : Giuùp hoïc sinh naém ñöôïc caùch tìm giao tuyeán cuûa hai maët phaúng, Tìm giao ñieåm cuûa ñöôøng thaúng vôùi maët phaúng. 
 * Kyõ naêng : Xaùc ñònh ñöôïc maët phaúng trong khoâng gian, veõ ñöôïc caùc hình trong khoâng gian vaø kyû naêng giaûi toaùn veà tìm giao ñieåm cuûa ñöôøng thaúng vôùi maët phaúng , giao tuyeán cuûa hai maët phaúng vaø caùc baøi toaùn coù lieân quan ñeán maët phaúng. 
 * Thaùi ñoä : Lieân heä ñöôïc vôùi nhieàu vaán ñeà coù trong thöïc teá vôùi baøi hoïc, coù nhieàu saùng taïo trong hình hoïc, höùng thuù , tích cöï c phaùt huy tính ñoäc laäp trong hoïc taäp.
 Phöông phaùp daïy hoïc :
	*Dieãn giaûng, gôïi môû vaán ñaùp vaø hoaït ñoäng nhoùm.
II. Chuaån bò cuûa GV - HS :
	Baûng phuï hình veõ trong caùc baøi taäp ôû SGK, thöôùc , phaán maøu . . . 
III. Tieán trình daïy hoïc :
	1. Oån ñònh toå chöùc :
	2. Kieåm tra baøi cuû : Neâu caùc tính chaát thöùa nhaän. Neâu caùch tìm giao tuyeán cuûa hai maët phaúng. Caùch tìm giao ñieåm cuûa ñöôøng thaúng vôùi maët phaúng.
	2. Vaøo baøi môùi : 
Hoaït ñoäng cuûa giaùo vieân 
Hoaït ñoäng cuûa hoïc sinh
+ Gv goïi hS leân baûng veõ hình vaø trình baøy baøi giaûi, caû lôùp quan saùt vaø neâu nhaän xeùt. GV trình baøy laïi caùch giaûi
Tìm ñöôøng thaúng d’ naèm trong (a) maø caét d taïi I, ta coù ngay I laø giao ñieåm cuûa d vaø (a )
Baøi 1 :a). Ta coù E ,F Î ( ABC) 
b).
Baøi 2 : ta coù M Î ( a). Goïi ( b) laø maët phaúng baát kyø chöùa d , neân 
Vaäy M laø ñieåm chung cuûa ( a).vaø ( b) chöøa ñöôøng thaúng d
Baøi 3 : Goïi d1 , d2 vaø d3 laø ba ñöôøng thaúng ñaõ cho. Goïi I = Ta phaûi chöùng minh I
Ta coù 
Töø ñoù suy ra 
Baøi 4 : Goïi I laø trung ñieåm cuûa CD. 
Ta coù GA Î BI. GBÎ AI
Goïi G = 
Maø neân GAGB // AB vaø 
 Töông töï ta coù CGC vaø DGD cuõng caét AGA taïi G’ , G’’ vaø . Nhö vaäy G º G’ºG’’ . Vaäy AGA ; BGB ; CGC ; DGD ñoàng qui.
Baøi 5 :
a). Goïi E= ABÇCD. 
Ta coù (MAB) Ç(SCD) = ME
Goïi N= ME ÇSD. Ta coù N = SD Ç(MAB).
b). Goïi I = AMÇBN
Ta coù I = AM ÇBN , AMÌ ( SAC) ;
 BN Ì (SBD) ; ( SAC) Ç(SBD) = SO
Do ñoù I Î SO
4. Cuûng coá : Töøng phaàn
5. Höôùng daãn veà nhaø : Xem baøi “ Hai ñöôøng thaúng cheùo nhau vaø hai ñöôøng thaúng song song”
Những lưu ý, kiến nghị, bổ sung, sửa đổi sau tiết giảng:
 Lớp: 	 Đối tượng học sinh: 	 Nội dung
Tiết ppct : 33 Ngày so¹n : 31/10/2009
Líp
Ngµy d¹y
Tªn häc sinh v¾ng
Ghi chó
11C
CHƯƠNG II : TỔ HỢP – XÁC SUẤT
§1. QUY TẮC ĐẾM
I. MỤC TIÊU.
1. Về kiến thức:Giúp học sinh nắm được qui tắc cộng và qui tắc nhân
2. Về kỹ năng: Biết vận dụng để giải một số bài toán
3. Về tư duy thái độ : Có tinh thần hợp tác, tích cực tham gia bài học, rèn luyện tư duy logic.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ 
1. Chuẩn bị của GV : Bảng phụ, phiếu trả lời trắc nghiệm
2. Chuẩn bị của HS : 
 PHƯƠNG PHÁP DẠY HỌC 
 Về cơ bản sử dụng PPDH gợi mở vấn đáp đan xen hoạt động nhóm.
III. TIẾN TRÌNH BÀI HỌC .
HĐ của HS
HĐ của GV
Ghi bảng – Trình chiếu
Hoạt động 1:Ôn tập lại kiến thức cũ – Đặt vấn đề
- Nghe và hiểu nhiệm vụ
- Nhớ lại kiến thức cũ và trả lời câu hỏi
- Hãy liệt kê các phần tử của tập hợp A, B
A={x ÎR / (x-3)(x2+3x-4)=0}
 ={-4, 1, 3 }
 B={x Î Z / -2 ≤ x < 4 }
 ={-2, -1, 0, 1, 2, 3 }
- Làm bài tập và lên bảng trả lời
- Hãy xác định A Ç B 
A Ç B = {1 , 3}
- Cho biết số phần tử của tập hợp A, B, A Ç B?
- Giới thiệu ký hiệu số phần tử của tập hợp A, B, A Ç B?
n(A) = 3 hay |A| = 3
n(B) = 6 
n(A Ç B) = 2
- Để đếm số phần tử của các tập hợp hữu hạn đó, cũng như để xây dựng các công thức trong Đại số tổ hợp, người ta thường sử dụng qui tắc cộng và qui tắc nhân
Hoạt động 2: Giới thiệu qui tắc cộng
- Nghe và hiểu nhiệm vụ
- Trả lời câu hỏi
- Có bao nhiêu cách chọn một trong 6 quyển sách khác nhau?
- Có bao nhiêu cách chọn một trong 4 quyển vở khác nhau?
- Vậy có bao nhiêu cách chọn 1 trong các quyển đó?
I. Qui tắc cộng: 
Ví dụ: Có 6 quyển sách khác nhau và 4 quyển vở khác nhau. Hỏi có bao nhiêu cách chọn một trong các quyển đó? 
Giải: Có 6 cách chọn quyển sách và 4 cách chọn quyển vở, và khi chọn sách thì không chọn vở nên có 6 + 4 = 10 cách chọn 1 trong các quyển đã cho.
- Giới thiệu qui tắc cộng
Qui tắc: (SGK Chuẩn, trang 44) 
- Thực chất của qui tắc cộng là qui tắc đếm số phần tử của 2 tập hợp không giao nhau
n(AÈB) = n(A) + n(B)
- Giải ví dụ 2
- Hướng dẫn HS giải ví dụ 2
Ví dụ 2: (SGK chuẩn, trang 44)
- Yêu cầu HS chia làm 4 nhóm làm bài tập sau trên bảng phụ
BT1: Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 quyển tập khác nhau. Một HS muốn chọn một đồ vật duy nhất hoặc 1 cây bút chì hoặc 1 bút bi hoặc 1 cuốn tập thì có bao nhiêu cách chọn?
- Đại diện nhóm trình bày.
- Nhận xét câu trả lời của bạn và bổ sung nếu cần
- Cho nhóm khác nhận xét
- Nhận xét câu trả lời của các nhóm
- phát biểu điều nhận xét được
- HS tự rút ra kết luận 
Chú ý: Quy tắc cộng có thể mở rộng cho nhiều hành động
Hoạt động 3: Giới thiệu qui tắc nhân
- Yêu cầu HS đọc ví dụ 3, dùng sơ đồ hình cây hướng dẫn để HS dễ hình dung
II. Qui tắc nhân:
Ví dụ 3: (SGK chuẩn, trang 44)
- Giới thiệu qui tắc nhân.
- Trả lời câu hỏi
- Hướng dẫn HS giải Bt2/45 nhằm củng cố thêm ý tưởng về qui tắc nhân
- Nghe và hiểu nhiệm vụ
- Chia làm 4 nhóm, yêu cầu HS nhóm 1,2 làm ví dụ 4a, HS nhóm 3,4 làm ví dụ 4b SGK chuẩn trang 45.
- Phát biểu điều nhận xét được
- Yêu cầu HS tự rút ra kết luận
Chú ý: Qui tắc nhân có thể mở rộng cho nhiều hành động liên tiếp
Hoạt động 4: Củng cố kiến thức
- Đại diện nhóm trình bày phương án chọn của mình.
- Cho HS nhóm khác nhận xét.
- Nhận xét các câu trả lời của HS
- Yêu cầu HS rút ra nhận xét khi nào dùng qui tắc cộng và khi nào dùng qui tắc nhân
- BTVN: 1,2,3,4 SGK trang 46
Những lưu ý, kiến nghị, bổ sung, sửa đổi sau tiết giảng:
 Lớp: 	 Đối tượng học sinh: 	 Nội dung
Tiết ppct : 34 Ngày so¹n : 01/11/2009
Líp
Ngµy d¹y
Tªn häc sinh v¾ng
Ghi chó
11C
luyÖn tËp
i. môc tiªu
1. KiÕn thøc
HS vËn dông:
	• Hai quy t¾c ®Õm c¬ b¶n: quy t¾c céng vµ quy t¾c nh©n.
	• BiÕt ¸pdông vµo tõng bµi to¸n: Khi nµo dïng quy t¾c céng, khi nµo dïng quy t¾c nh©n.
2. KÜ n¨ng
	• TÝnh chÝnh x¸c sè phÇn tö cña mçi tËp hîp mµ s¾p xÕp theo quy luËt nµo ®ã(céng hay nh©n).
3. Th¸i ®é
	• Tù gi¸c, tÝch cùc trong häc tËp.
	• BiÕt ph©n biÖt râ c¸c kh¸i niÖm quy t¾c céng, quy t¾c nh©n vµ vËn dông trong tõng tr­êng hîp cô thÓ.
	• T­ duy c¸c vÊn ®Ò cña to¸n häc mét c¸ch l«gÝc vµ hÖ thèng.
ii. chuÈn bÞ cña gv vµ hs
1. ChuÈn bÞ cña GV
	• ChuÈn bÞ c¸c c©u hái gîi më.
	• ChuÈn bÞ hÖ thèng c©u hái tr¾c nghiÖm
	• ChuÈn bÞ phÊn mµu vµ mét sè ®å dïng kh¸c.
2. ChuÈn bÞ cña HS
CÇn «n l¹i mét sè kiÕn thøc ®· häc vÒ quy t¾c céng vµ nh©n cña bµi to¸n chän.
iII. tiÕn tr×nh d¹y häc
a. ®Æt vÊn ®Ò
C©u hái 1
Cã thÓ thµnh lËp bao nhiªu sè cã 3 ch÷ sè kh¸c nhau tõ c¸c sè 1, 2, 3, 4,5.
GV gäi häc sinh nªn b¶ng.
C©u hái 2
Cho 10 ch÷ sè: 0, 1, 2, ..., 6.
cã bao nhiªu sè cã 5 ch÷ sè kh¸c nhau ?
b. bµi míi
1Bµi tËp 1 SGK Tr 46
. H­íng dÉn. Sö dông c¸c ph­¬ng ph¸p ®Õm sè phÇn tö cña mét tËp hîp.
KÝ hiÖu: N(A), N(B), N(C), N(D) lµ c¸c sè cÇn t×m øng víi c¸c c©u a), b), c) vµ d).
§¸p sè.
a) N(A) = 4;
b) Gi¶ sö sè cÇn t×m lµ . Cã 4 c¸ch chän a vµ 4 c¸ch chän b. VËy theo quy t¾c nh©n ta cã N(B) = 42 = 16.
c) Gi¶ sö sè cÇn t×m lµ . Cã 4 c¸ch chän a 3 c¸ch chän b vµ 2 c¸ch chän c. VËy theo quy t¾c nh©n ta cã
N(C) = 4.3.2 = 24.
d) T­¬ng tù c©u b), dïng quy t¾c nh©n: Sè c¸c sè gåm 3 ch÷ sè ®­îc t¹o tõ c¸c ch÷ sè 1, 2, 3, 4 lµ 43 = 64.
VËytheo quy t¾c céng, c¸c sè gåm kh«ng qu¸ ba ch÷ sè lµ
N(D) = 4 + 42 + 43 = 84.
2. Bµi tËp 2 SGK Tr 46
Ho¹t ®éng cña GV
Ho¹t ®éng cña HS
C©u hái 1
Mét sè tù nhiªn nhá h¬n 100 cã mÊy ch÷ sè?
C©u hái 2
Cã bao nhiªu sè cã mét ch÷ sè?
C©u hái 3
Cã bao nhiªu sè cã hai ch÷ sè?
C©u hái 4
Cã bao nhiªu ch÷ sè nhá h¬n 100?
Gîi ý tr¶ lêi c©u hái 1
Mét hoÆc hai ch÷ sè.
Gîi ý tr¶ lêi c©u hái 2
10 sè.
Gîi ý tr¶ lêi c©u hái 3
Cã 10.9 = 90 sè.
Gîi ý tr¶ lêi c©u hái 4
Cã 100 sè.
3. Bµi tËp 3 SGK Tr 46
Ho¹t ®éng cña GV
Ho¹t ®éng cña HS
C©u hái 1
Cã bao nhiªu c¸ch ®i tõ A ®Õn D?
C©u hái 2
Cã bao nhiªu c¸ch ®i tõ D ®Õn A?
C©u hái 3
Cã bao nhiªu c¸ch ®i tõ A ®Õn D råi quay vÒ A?
Gîi ý tr¶ lêi c©u hái 1
Cã 4.3.2 = 24 c¸ch.
Gîi ý tr¶ lêi c©u hái 2
Cã 3.2.4 c¸ch.
Gîi ý tr¶ lêi c©u hái 3
Cã 24 + 24 = 48 c¸ch.
4. Bµi tËp 4 SGK Tr 46
Ho¹t ®éng cña GV
Ho¹t ®éng cña HS
C©u hái 1
§Ó chän mét ®ång hå cÇn bao nhiªu hµnh 
®éng?
C©u hái 2
Cã bao nhiªu c¸ch chän mét ®ång hå?
Gîi ý tr¶ lêi c©u hái 1
Hai hµnh ®éng: chän mÆt råi chän d©y hoÆc ng­îc l¹i.
Gîi ý tr¶ lêi c©u hái 2
Cã 3.4 =12 c¸ch chän.
c. cñng cè
ho¹t ®éng 5
mét sè c©u hái tr¾c nghiÖm
1. Mét bµi tËp gåm hai c©u, hai c©u nµy cã c¸ch gi¶i kh«ng liªn quan ®Õn nhau. Sè c¸ch gi¶i ®Ó thùc hiÖn c¸c c©u trong bµi to¶ntªn lµ
	(a) 3;	(b) 4;
	(c) 5;	(d) 6.
Tr¶ lêi. Chän (c).
2. §Ó gi¶i mét bµi tËp ta cÇn gi¶i hai bµi tËp nhá. Bµi tËp 1 cã 3 c¸ch gi¶i, bµi tËp 2 cã 4 c¸ch gi¶i. Sè c¸c c¸ch gi¶i ®Ó hoµn thµnh bµitËp trªn lµ
	(a) 3;	(b) 4;
	(c) 5;	(d) 6.
Tr¶ lêi. Chän (d).
3. Mét l« hµng ®­îc chia thµnh 4 phÇn, Mçi phÇn ®­îc chia vµo 20 hép kh¸c nhau. Ng­êi ta chän 4 hép ®Ó kiÓm tra chÊt l­îng.
Sè c¸ch chän lµ
	(a) 20.19.18.17;	(b) 20 + 19 + 18 +17;
	(c) 80.79.78.77;	(d) 80 + 79 + 78 + 77.
Tr¶ lêi. Chän (c).
4. Cho c¸c ch÷ sè:1, 3, 5, 6, 8. Sè c¸c sè ch½n cã 3 ch÷ sè kh¸c nhau cã ®­îc tõ c¸c sè trªn lµ:
	(a) 12;	(b) 24;
	(c) 20;	(d) 40.
Tr¶ lêi. Chän (b).
5. Cho c¸c ch÷ sè:1, 3, 5, 6, 8. Sè c¸c sè ch½n cã 4 ch÷ sè kh¸c nhau cã ®­îc tõ c¸c sè trªn lµ:
	(a) 4.3.2	(b) 4 + 3 + 2;
	(c) 2.4.3.2;	(d) 5.4.3.2.
Tr¶ lêi. Chän (c).
6. Cho c¸c ch÷ sè:1, 3, 5, 6, 8. Sè c¸c sè lÎ cã 4 ch÷ sè kh¸c nhau cã ®­îc tõ c¸c sè trªn lµ:
	(a) 4.3.2	(b) 4 + 3 + 2;
	(c) 2.4.3.2;	(d) 5.4.3.2.
Tr¶ lêi. Chän (c).
7. Mét líp häc cã 4 tæ, tæ 1 cã 8 b¹n, c¸c tæ cßn l¹i cã 9 b¹n.
a) Sè c¸ch chän mét b¹n lµm líp tr­ëng lµ
	(a) 17;	(b) 35;
	(c) 27;	(d) 9.
Tr¶ lêi. Chän (b).
b) Sè c¸ch chän mét b¹n lµm líp tr­ëng sau ®ã chän hai b¹n líp phã lµ
	(a) 35.34.32	(b) 35 + 34 + 33;
	(c) 35.34	(d) 35.33.
Tr¶ lêi. Chän (a).
ca) Sè c¸ch chän hai b¹n trong mét tæ lµm trùc nhËt lµ
	(a) 35.34;	(b) 7.8 + 3.8.9;
	(c) 35 + 34;	(d) 35.33.
Tr¶ lêi. Chän (b).
D. H­íng dÉn vÒ nhµ
BTVN : Bµi 1.2 ; 1.2 ; 1.3 ; 1.4 ; 1.5 ; 1.6 SBT Tr59
Những lưu ý, kiến nghị, bổ sung, sửa đổi sau tiết giảng:
 Lớp: 	 Đối tượng học sinh: 	 Nội dung
KÝ duyÖt cña tæ tr­ëng tæ tù nhiªn
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Tài liệu đính kèm:

  • docTUẦN 9.doc