Giáo án Hình học 12 nâng cao: Mặt cầu, khối cầu (tiết 2)

Giáo án Hình học 12 nâng cao: Mặt cầu, khối cầu (tiết 2)

Tiết 2 ChuongII§1 MẶT CẦU,KHỐI CẦU

I. Tiến trình bài học :

 1. Ổn định :

 2. Kiểm tra bài cũ (5’): nhắc lại định nghĩa mặt cầu, vị trí tương đối giữa mặt cầu và mặt phẳng

 3. Bài mới :

Hoạt động 1 : Vị trí tương đối giữa mặt cầu và đường thẳng

 

doc 2 trang Người đăng trường đạt Lượt xem 1215Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hình học 12 nâng cao: Mặt cầu, khối cầu (tiết 2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn : 12/08/2008
Tiết 2 	ChuongII§1 	MẶT CẦU,KHỐI CẦU
I. Tiến trình bài học :
	1. Ổn định :
	2. Kiểm tra bài cũ (5’): nhắc lại định nghĩa mặt cầu, vị trí tương đối giữa mặt cầu và mặt phẳng
	3. Bài mới :
Hoạt động 1 : Vị trí tương đối giữa mặt cầu và đường thẳng
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
10’
*Cho S(O;R) và đt D
Gọi H là hình chiếu của O trên D và d = OH là khoảng cách từ O tới D . Hoàn toàn tương tự như trong trường hợp mặt cầu và mặt phẳng, cho biết vị trí tương đối giữa mặt cầu (S) và đt D ?
* Cho điểm A và mặt cầu S(O;R). Có bao nhiêu đt đi qua A và tiếp xúc với S
 GV dẫn dắt đến dịnh lí
HS hiểu câu hỏi và trả lời
+ Trường hợp A nằm trong (S) :không có tiếp tuyến của (S) đi qua A
+ Trường hợp A nằm trong (S) :có vô số tiếp tuyến của (S) đi qua A, chúng nằm trên mặt phẳng tiếp xúc với (S) tại A.
+ Trường hợp A nằm ngoài (S) : có vô số tiếp tuyến của (S)
III. Vị trí tương đối giữu mặt cầu và đường thẳng
1. Vị trí tương đối : sgk
2. Định lí : sgk
Hoạt động 2 : Diện tích mặt cầu và thể tích khối cầu :
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
Giới thiệu công thức tính diện tích của mặt cầu , thể tích của khối cầu
IV. Diện tích mặt cầu và thể tích của khối cầu.
S = 4PR2
V = 4PR3/3
Hoạt động 3 : Củng cố thông qua ví dụ 
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng 
5’
GV hướng dẫn để học sinh phát hiện đường kính mặt cầu là AD
VD 1 : bài tập 1/45
10’
GV hướng dẫn để học sinh phát hiện ra tâm của mặt cầu trong 2 câu a và b
A
B
C
D
B’
A’
C’
D’
VD2:Chohình lập phương ABCD.A’B’C’D’cạnh a
 a. Tính diện tích mặt cầu ngoại tiếp hình lập phương
 b. Tính diện tích mặt cầu tiếp xúc với tất cả các mặt của hình lập phương
10’
Hướng dẫn :
SH là trục của DABC
M thuộc SH, ta có : MA = MB = MC. Khi đó gọi I là tâm mặt cầu ngoại tiếp S.ABC, I là giao điểm của SH và đường trung trực của đoạn SA trong mặt phẳng (SAH)
Tính R = SI
Xét DSMI đồng dạng DSHA
Có SI SM 
 = R = SI
 SA SH 
VD3:Tính thể tích khối cầu ngoại tiếp hình chop tam giấc đều có cạch đáy bằng a và chiều cao bằng h

Tài liệu đính kèm:

  • docChuongIIᄃ1.mặt cầu tiết 2.doc