CHƯƠNG II: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG
BÀI 1 : GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KỲ
( Số tiết : 2 )
1. Mục tiêu
1.1. Về kiến thức
- Định nghĩa giá trị lượng giác của các góc tuỳ ý từ 00 đến 1800.
- Tính chất : Hai góc bù nhau thì sin bằng nhau , còn cosin , tang và cotang của chúng đối nhau.
- Giá trị lượng giác của một số góc đặc biệt .
1.2. Về kĩ năng
Nắm được quy tắc tính giá trị lượng giác của các góc tù
Chương ii: TíCH VÔ hướng của hai vectơ và ứng dụng BàI 1 : GIá TRị lượng giác của một góc bất kỳ ( Số tiết : 2 ) Mục tiêu Về kiến thức Định nghĩa giá trị lượng giác của các góc tuỳ ý từ 00 đến 1800. Tính chất : Hai góc bù nhau thì sin bằng nhau , còn cosin , tang và cotang của chúng đối nhau. Giá trị lượng giác của một số góc đặc biệt . Về kĩ năng Nắm được quy tắc tính giá trị lượng giác của các góc tù Về tư duy Hiểu được giá trị lượng giác của một góc bất kì (từ đến ) Về thái độ Cẩn thận , chính xác. Biết được ứng dụng trong thực tiễn. Phương tiện dạy học Thực tiễn Học sinh đã học tỉ số lượng giác của một góc nhọn ở lóp dưới. Phương tiện Chuẩn bị các bảng kết quả mỗi hoạt động . Phiếu học tập. 3. Gợi ý về PPDH Dùng phương pháp gợi mở vấn đáp thông qua các HĐ điều khiển tư duy , xen kẻ hoạt động nhóm . 4. Tiến trình bài học và các hoạt động a) Các tình huống học tập Tình huống 1: Giáo viên nêu vấn đề “ Tỉ số lượng giác của một góc nhọn, tính giá trị lượng giác của một góc bất kì ”. GQVĐ qua các hoạt động . HĐ 1: Giả sử (x;y) là toạ độ của điểm M. Hãy chứngtỏ: sin=y; cos=x; tan=; cot= HĐ 2: SGK Tình huống 2: : Giáo viên nêu các bài tập trong SGK . GQVĐ qua các hoạt động HĐ 3: Tính giá trị của biểu thức ( BT 1/ 43) HĐ 4: Rút gọn biểu thức( BT 2/ 43) HĐ 5: Chứng minh hệ thức( BT 3/ 43) b) Tiến trình bài học Tiết 1 HĐ 1: Là HĐ thực tiễn dẫn vào định nghĩa. HĐ của HS HĐ của GV *Tìm các GTLG của góc 1350; 00; 900; 1800 *Với các góc nào thì sin0. * Yêu cầu HS nêu định nghĩa TSLG của một góc nhọn . *GV nêu vấn đề : “ Nếu 900 <<1800 thì TSLG được tính như thế nào?” *GV giúp HS nắm được định nghĩa GTLG của một góc bất kì ( 00< <1800) HĐ 2 : Ch/m tính chất “Hai góc bù nhau thì sin bằng nhau ; còn cosin , tang và cotang của chúng đối nhau” HĐ của HS HĐ của GV *Tìm các GTLG của góc 1500 Vì 1500 bù với 300 nên : sin1500=sin(1800-300)=sin300= cos1500=-cos300=- tan1500=-tan300=- cot1500=cot300=- *GV hướng dẫn để suy ra tính chất . sin(1800-)= sin; cos(1800-)=-cos; tan(1800-)=-tan () cot(1800-)=-cot ( 00 <<1800 ) Tiết 2 HĐ 3: Rèn luyện kĩ năng Tính giá trị của biểu thức: a) b) HĐ của HS HĐ của GV a) * ; b) *Hướng dẫn và kiểm tra việc thực hiện các bước của HS *Sửa chữa kịp thời các sai lầm của HS *Lưu ý HS các bước giải bài tập *Hướng dẫn và kiểm tra việc thực hiện các bước của HS *Sửa chữa kịp thời các sai lầm của HS *Lưu ý HS các bước giải bài tập H Đ 4 : Rèn luyện kỹ năng . Đơn giản biểu thức. HĐ của HS HĐ của GV Tìm GTLG của mỗi biểu thức bằng cách áp dụng tính chất GTLG của hai góc bù nhau . *Hướng dẩn việc và kiểm tra việc giải bài tập của HS * Sửa chửa kịp thời các sailầm cảu HS * Lưu ý các bước giải BT của HS H Đ 5 : Củng cố bài thông qua BT3/ SGK Chứng minh các hệ thức . HĐ của HS HĐ của GV Tìm GTLG của mỗi biểu thức bằng cách áp dụng tính chất GTLG của hai góc bù nhau . GV hướng dẫn HS các bước tiến hành chứng minh một hệ thức * Định nghĩa GTLG của một góc . * Định lý Pitago . * Kết luận . 5. Củng cố toàn bài Câu hỏi 1: Với những giá trị nào của góc thì : và cos có cùng dấu? khác dấu ? tan và cos khác dấu ? Câu hỏi 2: Cho tan . Tính sin , cos ? Câu hỏi 3: Cho . Khi đó giá trị của cos là : ( A ) ( B ) ( C ) ( D ) BàI 2 : TíCH VÔ HƯớNG của hai vectơ Số tiết : 4 Mục tiêu Về kiến thức Nắm được định nghĩa , tính chất , ý nghĩa vật lý của tích vô hướng và biểu thức toạ độ của nó . Về kĩ năng Vận dụng được các tính chất của tích vô hướng trong tính toán , biết chứng minh hai vectơ vuông góc bằng cách dùng tích vô hướng , biết sử dụng bình phương vô hướng của một vectơ . Về tư duy Thực hiện thành thạo các bước tính toán giá trị của một biểu thức tích vô hướng , chứng minh một đẳng thức về tích vô hướng . Về thái độ Cẩn thận , chính xác . Biết được ứng dụng của tích vô hướng . Phơng tiện dạy học Thực tiễn Học sinh đã họ các phép toán thông thường . Phương tiện Chuẩn bị các đồ dùng dạy học liên quan . Chuẩn bị phiế học tập . 3. Gợi ý về PPDH Cơ bản dùng PP gợi mở , vấn đáp thông qua các HĐ điều tư duy , đan xen hoạt động nhóm . 4. Tiến trình bài học và các hoạt động a) Các tình huống học tập Tình huống 1 : HĐ1 : Cho tam giác ABC vuông tại A và có B = 500 .Tính các góc : HĐ 2 : Hãy chứng minh các hệ thức sau a) b) HĐ 3 : Hãy phát biểu bằng lời kết luận của bài toán sau . Cho hai vectơ . Gọi B/ là hình chiếu vuông góc của B trên đường thẳng OA . Chứng minh rằng HĐ 4 : Trong hệ toạ độ cho . Tính a) ; b) ; c) ; d) HĐ 5 : Cho hai véctơ và a) Tìm m để và vuông góc với nhau . b) Tìm độ dài của và . Tìm m để Tình huống 2 : HĐ 6 : Tiến hành giải bài tập trong SGK . b) Tiến trình bài học Tiết 1 HĐ 1 : Cho tam giác ABC vuông tại A và có B = 500 .Tính các góc : Hoạt động của học sinh Hoạt động của giáo viên Bước 1 : Vẽ hình Bước 2 : Xác định các góc Bước 3 : Tính số đo của các góc . Tổ chức việc thực hiện của HS Hướng dẩn HS cách xác định góc giữa hai vectơ . HĐ2 : Hãy chứng minh các hệ thức a) b) HĐ của HS HĐ của GV Nghe , hiểu nhiệm vụ . Tìm phương pháp chứng minh . Trình bày kết quả . Chỉnh sửa hoàn thiện . Ghi nhận kiến thức . Kiểm tra việc thực hiện các bước của HS . Sửa chữa kịp thời các sai lầm . Kết luận . HĐ 3 : : Hãy phát biểu bằng lời kết luận của bài toán sau . Cho hai vectơ . Gọi B/ là hình chiếu vuông góc của B trên đường thẳng OA . Chứng minh rằng HĐ của HS HĐ của GV Nghe , hiểu nhiệm vụ . Tìm phương án thấng . Trình bày kết quả . Chỉnh sủa hoàn thiện . Ghi nhận kiến thức . Tổ chức việc thực hiện của hs . Phát biểu bài toán . Chứng minh . Kết luận : Tích vô hướng của hai vectơ bằng tích vô hướng của vectơ và hình chiếu của vectơ trên đường thẳng OA . Tiết 2 HĐ 4 : Trong hệ toạ độ cho . Tính a) ; b) ; c) ; d) HĐ của HS HĐ của GV Nghe , hiểu nhiệm vụ . Tìm phương án thấng . Trình bày kết quả . Chỉnh sủa hoàn thiện . Ghi nhận kiến thức . Tổ chức việc thực hiện của hs . Phát biểu bài toán . Sửa chữa kịp thời các sai lầm . Nêu kết quả : HĐ 5 : Củng cố bài học qua bài toán sau . Cho hai véctơ và a) Tìm m để và vuông góc với nhau . b) Tìm độ dài của và . Tìm m để HĐ của HS HĐ của GV a) *Tính * Tìm m để : -1+ 2m =0 b) * * * * Kiểm tra việc thực hiện của HS . * Sửa chữa kịp thời các sai lầm . * Ra bài tập tương tự : bài số 13 trang 52 SGK . Tiết 3 Kiểm tra bài củ : HĐ 6 : Phát biểu định nghĩa tích vô hướng của hai vectơ . HĐ của HS HĐ của GV Nghe , hiểu nhiệm vụ . Tìm phương án thấng . Trình bày kết quả . Chỉnh sủa hoàn thiện . Ghi nhận kiến thức . *Tổ chức cho học sinh tự ôn tập kiến thức củ . HS giải BT 4,5,6 trang 51 SGK . * Cho HS ghi nhận kiến thức . HĐ 7 : Phát biểu tính chất của tích vô hướng . Hãy cm tính chất 1,2,3 . HĐ của HS HĐ của GV Nghe , hiểu nhiệm vụ . Tìm phương án thấng . Trình bày kết quả . Chỉnh sủa hoàn thiện . Ghi nhận kiến thức . *Tổ chức cho học sinh tự ôn tập kiến thức củ . * Cho HS ghi nhận kiến thức . Bài mới Tiết 4 HĐ 8 : Giải bài tập 7 trang 52 . HĐ của HS HĐ của GV Với điểm O nào đó ta có : Dùng tính chất phân phối của tích vô hướng để phá các dấu ngoặc , ta có kết quả bằng 0 . Hệ quả : Ba đường cao trong một tam giác đồng quy . Thật vậy , từ đẳng thức trên ta suy ra : nếu và Thì , hay nói cách khác : nếu và Thì Điều đó chứng tỏ rằng nếu hai đường cao vẽ từ A và B của tam giác ABC cắt nhau tại D thì CD cũng là đường cao của tam giác đó . Giao bài tập và hướng dẩn cách giải . HĐ 9 : Giải bài tập 10 trang 52 . HĐ của HS HĐ của GV a) Ta chú ý rằng hình chiếu của vectơ trên đường thẳng AI là vectơ bởi vậy theo công thức hình chiếu ta có : . Tương tự : b) GV giao bài tập và hướng dẩn cách giải . HĐ 10 : Giải bài tập 14 trang 52 . HĐ của HS HĐ của GV a) Ta có Vậy chu vi của tam giác ABC là Do AB=AC nên tam giác ABC cân tại A . Gọi H là trung điểm cua BC thì và . Do đó Vậy diện tích S của tam giác ABC là : b ) Trọng tâm của tam giác ABC là hay G GV giao bài tập và hướng dẩn cách giải . Lưu ý : Đối với học sinh khá , giỏi , GV có thể giới thiệu công thức BàI 3 : Hệ THứC LƯợNG TRONG TAM GIáC Số tiết : 4 1. Mục tiêu 1.1. Về kiến thức Kiến thức cơ bản mà học sinh cần nắm được là : Định lý côsin , định lý sin trong tam giác và các hệ quả . Các công thức tính độ dài trung tuyến và diện tích tam giác . 1.2.Về kĩ năng Vận dụng được các định lý và công thức để giải các bài toán chứng minh và tính toán có liên quan đến độ dài trung tuyến , diện tích , chiều cao của tam giác. Đồng thời biết cách tính các góc , cáccạnh chưa biết của tam giác khi biết ba cạnh ,hoặc hai cạnh và góc xen giữa , hoặc một cạnh và hai góc kề . 1.3.Về tư duy Thực hiện thành thạo cách vận dụng kiến thức tương ứng vối mỗi dạng toán 1.4.Về thái độ Cẩn thận , chính xác . Biết được ứng dụng trong thực tế . 2. Phơng tiện dạy học 2.1.Thực tiễn Học sinh đã học các hệ thức lượng trong tam giác vuông . 2.2.Phương tiện Chuẩn bị các đồ dùng dạy học liên quan . Chuẩn bị phiếu học tập . 3. Gợi ý về PPDH Cơ bản dùng PP gợi mở , vấn đáp thông qua các HĐ điều tư duy , đan xen hoạt động nhóm . 4. Tiến trình bài học và các hoạt động a) Các tình huống học tập Tình huống 1 HĐ 1 : Chứng minh định lý côsin trong tam giác . HĐ 2 : Phát biểu bằng lời công thức tính một cạnh của tam giác theo hai cạnh còn lại và côsin của góc xen giữa hai cạnh đó . HĐ 3 : Công thức tính giá trị cosA , cosB , cosC theo a , b , c . HĐ 4 : Chứng minh các công thức a=2RsinA , b= 2RsinB , c=2RsinC . HĐ 5 : Giải bài toán 1 trang 58 . HĐ 6 : Giải bài toán 2 trang 58 . HĐ 7 : Chứng minh công thức ( 2 ) . HĐ 8 : Chứng minh công thức ( 3 ) . HĐ 9 : Chứng minh công thức ( 4 ) . HĐ 10 : Hãy tính diện tích của ba tam giác Hê-rông có độ dài các cạnh lần lượt là : 3; 4; 5 , 13 ; 14 ; 15 , 51 ; 52 ; 53 . HĐ 11 : Củng cố kiến thứ thông qua bài tập tổng hợp . Tình huống 2 GV nêu vấn đề bằng bài tập và GQVĐ thông qua các HĐ HĐ 12 : Giải BT dạng tính toán . HĐ 13 : Giải BT dạng chứng minh . HĐ 14 : Giải tam giác . b) Tiến trình bài học Tiết 1 HĐ 1 : Cho tam giác ABC , đặt BC=a ,CA= b , AB= c . Chứng minh công thức HĐ của HS HĐ của GV * Bước 1 : Cho tam giác ABC vuông tại A , theo định lý Pytago ta có : Hay Thật vậy , ta có : * Bước 2 : Cho tam giác ABC bất kỳ , đặt BC=a , CA=b ,AB= c . Ta có : Tổ chức cho HS tự ôn tập kiến thức cũ . Hướng dẫn phương pháp chứng minh cho HS . Cho HS ghi nhận kiến thức ( Công thứ của định lý ) . HĐ 2 : Định lý được phát biểu như sau : Trong một tam giác , bình phương một cạnh bằng tổng các bình phương của hai cạnh kia trừ đi hai lần tích của chúng với côsin của góc xen giữa hai cạnh đó . HĐ 3 : Từ định lý,ta có : HĐ 4 : Chứng minh định lý sin trong tam giác . HĐ của HS HĐ của GV * Vẽ hình *Trường hợp góc A nhọn : Ta có ( Cùng chắn cung BC ) *Trường hợp góc A tù : Ta có ( Tứ giác ABA’C là tứ giác nội tiếp ). Vậy trong cả hai trường hợp ta đều có : Tam giác A’BC vuông tại C , nên a= BC =BA’.sinA’= 2RsinA Tương tự , ta cũng có b=2RsinB ; c=2RsinC GV hướng dẫn cho HS các bước chứng minh định lý Chứng minh a= 2RsinA Vẽ hình Xét hai trường hợp góc A nhọn , góc A tù Kết luận Ghi nhận kiến thức HĐ 5 : Cho ba điểm A, B, C , trong đó BC= a > 0 . Gọi I là trung điểm của BC, biết AI= m . Hãy tính AB2 + AC2 theo a và m HĐ của HS HĐ của GV Ta có GV hướng dẩn và kiểm tra các bước tiến hành của HS Tiết 2 HĐ 6 : Từ đẳng thức , Ta có Khi , tập hợp điểm M là đường tròn tâm I , bán kính Khi , tập hợp cần tìm là điểm I . Khi , tập hợp cần tìm là tập rỗng. HĐ 7 : Chứng minh công thức . HĐ 8 : Chứng minhcông thức . HĐ 9 : Chứng minh công thức S= pr HĐ của HS HĐ của GV Gọi (O;R) là đường tròn nội tiếp tam giác ABC . Ta có : GV hướng dẫn cho HS các bước chứng minh . Sửa chữa các sai sót (nếu có ) Ghi nhận kiến thức . HĐ 10 : Rèn luyện kỹ năng (áp dụng công thức Hê-rông để tính diện tích tam giác ) Tam giác có ba cạnh 3,4,5 có diện tích S=6. Tam giác có ba cạnh 13,14,15 có diện tích S=84. Tam giác có ba cạnh 51,52,53 có diện tích S=1170. HĐ 11 : Củng cố kiến thức thông qua bài tập tổng hợp . Tam giác ABC cân tại ,, , D là điêm trên cạnh BC sao cho BC =3BD. Tính BC Tính AD theo và Chứng tỏ rằng đường tròn ngoại tiếp các tam giác ABD , ACD là bằng nhau. Tính để bán kính của chúng bằngbán kính R của đường tròn ngoại tiếp tam giác ABC HĐ của HS HĐ của GV - Vẽ hình: 1) 2) áp dụng công thức cosin : 3) * đpcm * điều kiện: GV giúp HS các bước tiến hành Vẽ hình. Vận dụng công thức để tính toán và chứng minh. Kết luận. Nhận xét . Tiết 3,4 HĐ 12 : Giải các bài tập dạng tính toán ( Bài 15 , 19 , 20 , 24,25,26,29 ) HĐ của HS HĐ của GV Nghe hiểu nhiệm vụ . Giải bài tập nhanh nhất. Trình bày kết quả . Chỉnh sửa hoàn thiện. Ghi nhận kiến thức. Hướng dẫn việc thực hiện của HS. Nhận dạng bài toán . Vận dụng công thức phù hợp . Vẽ hình minh hoạ . HĐ 13 : Giải các bài toán dạng chứng minh ( Bài 18,21,23,27,2830,31,32 ) HĐ của HS HĐ của GV Đọc đề bài và tìm phương pháp chứng minh. Độc lập tiến hành chứng minh. Trình bày kết quả . Chỉnh sửa hoàn thiện . Ghi nhận kiến thức. Giao nhiệm vụ và theo giỏi hoạt động của HS , hướng dẩn khi cần thiết . Đánh giá kết quả hoàn thành nhiệm vụ của từng học sinh . Sửa chữa các sai lầm thường gặp của HS . Đưa ra lời giải ( ngắn gọn nhất ) cho cả lớp . Hướng dẩn cách giải khác nếu có ( việc giải theo cách khác coi như là một bài tập về nhà ) 5. Củng cố : Câu hỏi 1 Cho tam giác ABC có AB = 5, AC = 8 , A = 600 . Kết quả nào sau đây làđộ dài của cạnh BC a) ; b ) 7 ; c )49 ; d ) Câu hỏi 2 Ba cạnh của một tam giác có độ dài lần lượt là : Tìm x để tồn tại tam giác như trên . Khi đó chứng minh tam giác ấy có một góc là 1200 Câu hỏi 3 Cho tam giác ABC có . Tính a,b,c.
Tài liệu đính kèm: