1. Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d1 và d2.
2. Trong không gian Oxyz, hãy lập phương trình mặt phẳng ( ) đi qua điểm M(3;2;1) và cắt ba tia Ox, Oy, Oz lần lượt tại ba điểm A, B, C sao cho thể tích khối tứ diện OABC có giá trị nhỏ nhất.
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 82-k ) Câu 1. (2,0 điểm). Cho hàm số y = . Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất. Câu 2. (2,0 điểm). Giải phương trình: sin3x(1 + cotx) + cos3x(1 + tanx) = 2 . Giải bất phương trình: x x2 – x – 2 – . Câu 3. (2,0 điểm). Tính diện tích hình phẳng giới hạn bởi parabol (P): y = 4x – x2 và các tiếp tuyến được kẻ từ điểm M ( ; 2) đến (P). Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a và . Tính thể tích khối chóp S.ABC theo a. Câu 4. (2,0 điểm) Viết về dạng lượng giác của số phức: z = 1 – cos2 - isin2 , trong đó . 2. Giải hệ phương trình: ( với x,y R). Câu 5. (2,0 điểm) Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d1 và d2. Trong không gian Oxyz, hãy lập phương trình mặt phẳng () đi qua điểm M(3;2;1) và cắt ba tia Ox, Oy, Oz lần lượt tại ba điểm A, B, C sao cho thể tích khối tứ diện OABC có giá trị nhỏ nhất. ..Hết.. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 83-k ) PHẦN CHUNG CHO MỌI THÍ SINH Câu I) Cho hàm số (Cm) 1). Khảo sát và vẽ đồ thị (Cm) khi m=0 2). Cho điểm M(3;1) và đường thẳng d:x+y-2=0. Tìm các giá trị của m để đường thẳng (d) cắt đồ thị tại 3 điểm A(0;2); B,C sao cho tam giác MBC có diện tích bằng Câu II) 1) Giải phương trình sau: 2) Tính tích phân sau: Câu III) 1) Giải hệ phương trình sau: 2) Cho khối lăng trụ ABCA’B’C’ có đáy ABC làn tam giác đều. Biết AA’=AB=a. Tính thể tích khối lăng trụ biết các mặt bên (A’AB) và (A’AC) cùng hợp với đáy ABC một góc bằng 600 Câu IV) Tìm m để bất phương trình nghiệm đúng với mọi x thuộc PHẦN RIÊNG (THÍ SINH CHỈ ĐƯỢC CHỌN PHẦN A HOẶC PHẦN B) PHẦN A) Câu VI A) 1) Trong mặt phẳng Oxy cho đường tròn (C) có phương trình Viết phương trình đường thẳng cắt 2 trục toạ độ tại A,B tiếp xúc với đường tròn (C) tại M sao cho M là trung điểm của AB. 2) Trong không gian Oxyz cho hình bình hành ABCD có phương trình cạnh và 2 đường thẳng . Biết đỉnh A thuộc d1, B thuộc d2. Xác định toạ độ các đỉnh và tính diện tích hình bình hành. Câu VII A) Tìm số phức z biết : PHẦN B) Câu VI B) 1) Trong mặt phẳng Oxy cho hai đường tròn (C1): và (C2): và điểm M(1;0). Viết phương trình đường thẳng qua M cắt (C1); (C2) tại A và B sao cho MA=2MB 2) Trong không gian Oxyz cho đường thẳng . Viết phương trình mặt phẳng (P) qua M song song với , đồng thời khoảng cách giữa đường thẳng và mặt phẳng (P) bằng 3. Câu VII B) Tìm dạng lượng giác số phức z biết |z| =2010 và có một gumen là
Tài liệu đính kèm: