Một số đề thi học sinh giỏi Toán 12 - Phần 3

Một số đề thi học sinh giỏi Toán 12 - Phần 3

Cho đường tròn có pt: x2 + y2 = R2 ( R. 0 ) , ABCD là một hình thoi ngoại tiếp đg tròn .M ( Rcosa ; Rsina) ; N (Rcosb; Rsinb) (với sin( a – b ) khác 0) lần lượt là tiếp điểm của các cạnhAB và BC với đường tròn .1 . Viết phương trình các cạnh của hình thoi ABCD.2. Tính diện tích hình thoi theo R ; a ; b

 

pdf 9 trang Người đăng trường đạt Lượt xem 1517Lượt tải 0 Download
Bạn đang xem tài liệu "Một số đề thi học sinh giỏi Toán 12 - Phần 3", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI SINH GIỎI LỚP 12 TỈNH NAM ĐỊNH 
851. Năm học 95-96 
Câu 1. 
 Giải hệ phương trình : 






xy
yx
21
21
2
2
Câu 2. 
 Cho bất phương trình : 01172)12(172 4 22  mxxmxxm (1) 
1.Giải phương trình (1) với m = 1 
 2.Với giá trị nào thì bất phương trình (1) 
 a.Nghiệm đúng với mọi giá trị x ? b.Có nghiệm ? 
Câu 3. 
 Cho parabol y = 0,5x2 và một điểm M(x0 ,y0) với y0 < 0,5 x02. Các tiếp tuyến kẻ từ M tới 
parabol tiếp xúc với parabol tại N1(x1,y1 ) và N2(x12,y2 ) 
 1. Chứng minh : y0 + y1 = x0x1 ; y0 + y2 = x0x2 
 2. Giả sử rằng M chạy trên đường thẳng y = - 0,5 . Chứng minh khi đó đường thẳng N1N2 đi 
qua một điểm cố định . Tìm toạ độ của điểm cố định đó . 
Câu 4. 
 Cho đường tròn có pt: x2 + y2 = R2 ( R. 0 ) , ABCD là một hình thoi ngoại tiếp đg tròn . 
M ( Rcosa ; Rsina) ; N (Rcosb; Rsinb) (với sin( a – b ) khác 0) lần lượt là tiếp điểm của các cạnh 
AB và BC với đường tròn . 
1 . Viết phương trình các cạnh của hình thoi ABCD. 
2. Tính diện tích hình thoi theo R ; a ; b 
Câu 5. 
 Cho Sn = 2 2 2
2( 1) 2( 2) 2( )......
( 1) 1 ( 2) 1 ( ) 1
n n n n
n n n n
    
     
 Với n = 1,2,3.... Tìm giới hạn nếu có của S n khi n  
 . 
86.Năm học 96-97 
Câu 1. 
 1. Lập bảng biến thiên ( không vẽ đồ thị ) của hàm số y=2x4+(1 – 2x )4 
2. Giải phương trình : 2x4 +( 1- 2x)4=
27
1 
Câu 2. 
 Cho elip (E) có phương trình : 1
49
22
 yx 
1. Lập phương trình các tiếp tuyến kẻ từ M ( 0; )13 tới (E) . Xác định góc của 2 tiếp tuyến 
đó 
2. Tìm tập hợp các điểm N sao cho các tiếp tuyến kẻ từ N tới (E) vuông góc với nhau 
Câu 3. 
 ABC là một tam giác bất kì có 3 góc nhọn . Chứng minh ABC là tam giác đều khi và chỉ khi : 


Nguyễn Văn Xỏ 
Đề thi HSG mụn Toỏn Trang 95 
(85 - 95)
 



 



 



 
3
2cos
3
2cos
3
2coscoscoscos ACCBBACBA 
Câu 4. 
 1. Chứng minh với mọi m 0 hàm số f(t) = 3 2mtm đồng biến trên tập xác định của nó 
3. Cho hệ phương trình : 









33
33
33
2.2
2.2
2.2
mxmz
mzmy
mymx
a. Giải hệ khi m = 0 b. Giải hệ khi m = 3 
.. 
87 .Năm học 97-98 
Câu 1. 
 Cho hàm số : f(x) = x3 –12x-20 (1) 
1. Khảo sát , lập bảng biến thiên ( không vẽ đồ thị ) của hàm số (1) 
2. Tính  33 164 f 
3. Chứng minh: 33 3 369 4 16 70   
Câu 2. 
 Cho hệ phương trình : 






mxx
mxx
414
12
2
2
1. Giải hệ với m =1 
2. Giải và biện luận hệ theo m 
Học sinh được chọn một trong hai câu 3a , 3b sau: 
Câu 3a. 
 Cho A(x0,y0) là một điểm bất kì thuộc đường tròn x2+y2=25 (E) là elíp có phương trình 
(E): 1
916
22
 yx 
1. Chứng tỏ rằng A nằm ngoài (E) 
2. Chứng minh từ A ta có thể kẻ được haitiếp tuyến của (E) và hai tiếp tuyến đó vuông góc . 
Gọi tiếp điểm của 2 tiếp tuyến đó với (E) là B và C 
3. Giả sử h là khoảng cách từ A đến đường thẳng BC . Tìm giá trị lớn nhất và nhỏ nhất của h 
Câu 3b. 
 Cho ABCDlà một tứ diện đều với các cạnh bằng 1 . Hai điểm M và N chuyển động trên các 
cạnh AB và AC sao cho tnp(DMN) )(ABCmp 
1. Chứng minh tnp(DMN)luôn đi qua một đường thẳng cố định 
2. Đặt AM=x và AN=y . Tính theo x,y diện tích AMN và chứng minh : x + y = 3xy 
3. Tìm giá trị lớn nhất và nhỏ nhất thể tích V của tứ diện ADMN 
Câu 4. 
 Cho các số a,b,c thoả mãn : 0 2,,  cba và a + b + c =3 
1. Chứng minh : a4+ b4 + c4 17 
2. Tìm giá trị lớn nhất của biểu thức : a1997+ b1997 + c1997 
. 

Nguyễn Văn Xỏ 
Đề thi HSG mụn Toỏn Trang 96 
88. Năm học 98-99 
Câu 1. 
 Cho hàm số : y = - 4x3 + 3x (1) 
1. Tìm khoảng đồng biến , nghịch biến của hàm số (1) và tìm điểm cực đại , cực tiểu của 
đồ thị hàm số đó 
2. Chứng minh bất đẳng thức :
75
2620sin
3
1 0  
Câu 2. 
 Cho phương trình )2(180016093
8
cos 2 


 

  xxx 
1. Giải phương trình (2) 
2. Tìm tất cả các nghiệm nguyên của (2) 
 Học sinh được chọn 1 trong 2 câu 3a hoặc 3b dưới đây 
Câu 3a. 
 Cho elip (E) có phương trình 1
916
22
 yx và hai điểm M (4cos ; 3sin ) ; 
N(4cos  sin3; )trong đó  ; thay đổi thoả mãn hệ thức : 0sinsin16coscos9   
1. Chứng minh các điểm MvàN đều thuộc (E) 
2. Chứng minh các tiếp tuyến của (E) tại Nvà M vuông góc với nhau 
3. Tìm giá trị lớn nhất và nhỏ nhất của đoạn thẳng MN 
Câu 3b. 
. 
 Hình chóp S.ABCcó 3 mặt SAB,SBC và SCA là các tam giác vuông tại S . Kẻ 
SH )(ABCmp với )(ABCmpH  
1. Chứng minh H là trực tâm của ABC 
2. Chứng minh hệ thức : 2222
1111
SCSBSASH
 
3. Giả sử SA = a , SB = b , SC = c thay đổi sao cho ab + bc + ca không đổi . 
Tìm GTLN của đoạn thẳng SH 
Câu 4. 
 A,B,C là 3 góc của một tam giác bất kì .Tìm giá trị lớn nhất của biểu thức : 
 P = cos A + cos B + cos C +
2
sin
2
sin
2
sin
1
CBA 
89.năm 1999-2000 
Câu1(6đ). 
 Cho hàm số : y=xlnx (1) 
1. Tìm tập xác định và khoảng đồng biến nghịch biến và giá trị nhỏ nhất của hàm số. 
2. CMR :
e
xx 1ln
2
 
Đề thi HSG mụn Toỏn Trang 97 
Nguyễn Văn Xỏ 


3. Tính đạo hàm của hàm số : 






00
0ln
)(
xkh
xkhixx
xf 
Câu2( 4đ). 
 Giải bất phương trình sau: log3(x2+1)+ log5(x4+1) 0 
Câu3a(6đ). 
 Giả sử A (x0; y0 ) là một điểm bất kỳ thuộc đường tròn x2 + y2 =25; (E) là elip có phương trình 
(E): 1
916
22
 yx . 
a. Chứng minh từ A có thể kẻ được hai tiếp tuyến tới (E) và hai tiếp tuyến đó vuông góc với 
nhau. Gọi tiếp điểm của chúng là B và C. 
b. Tìm giá trị lớn nhất và nhỏ nhất của diện tích tam giác ABC. 
Câu 3b(6đ). 
 Tứ diện ABCD chỉ có cạnh AD lớn hơn 1 . đặt BC =x . dựng DH và AK vuông góc với BC 
( H ,K đều thuộc cạnh BC ). 
1. Gọi V là thể tích của tứ diện ABCD chứng minh V DHBCAK ..
6
1 . 
2. Chứng minh : DH 
4
1
2x . 
3. Tìm x để thể tích V của tứ diện ABCD là lớn nhất . 
Câu 4(4đ). 
 Cho phương trình : x4 = 4 1144 x (2) 
1. Giả sử x0 là nghiệm của phương trình (2) chứng minh x0 > 1 
2. Giải phương trình (2). 
 .. 
90.Năm học 2000-2001 
Câu1. 
 Cho hàm số : F(x) = 
3( 1) khi x 1
1
a khi x=1
x
x
   


. 
Với giá trị nào của a thì hàm số có đạo hàm tại x=1 ? vơí giá trị của a tìm được tìm F’(1). 
Câu 2 . 
 Cho tam giác ABC . biết rằng trên mặt phẳng (ABC) có điểm M sao cho MA=1 ;MB=MC=6. 
gọi S là diện tích tam giác ABC . Chứng minh rằng : S 510 dấu bằng xẳy ra khi nào ? 
Câu3. 
 Cho A’(-a;0); A(a;0)và elip có phương trình (E): 12
2
2
2

b
y
a
x . Với a > b > 0 . Trên (E) lấy 
điểm M bất kỳ . tìm quỹ tích trực tâm H của tam giác MA A’ khi điểm M di chuyển trên (E) . 
 Câu 4 . 
 Giải hệ sau : sinx + 
ysin
1
= siny +
2000sin
1
= sin 2000 + 
xsin
1
. 
Đề thi HSG mụn Toỏn Trang 98 
Nguyễn Văn Xỏ 

 Câu 5 . 
 Cho hai phương trình sau : 
 3 (x2+a2 ) =1 - (9a2- 2)x (1); x +(3a -2 )2 . 3x =(8a -4)log3(3a - 1/2) - 3 x3 (2). 
 Tìm a để số nghiệm của phương trình (1) không vượt quá số nghiệm của (2) 
91.Năm học 2001-2002 
Câu1 . 
 Giải hệ phương trình sau x.2x-y+1 + 3y 22x+y =2 
 2x . 22x+y + 3y. 8x+y =1 . 
Câu2 . 
 Tìm m để phương trình sau vô nghiệm (4m-3) 3x + (3m -4) x1 = 1 - m. 
Câu 3 . 
 Gọi A,B,C là ba góc của tam giác ABC 
 a.CMR : (1+ tg
2
A )(1+tg
2
B )(1+ tg
2
C )=2+2 tg
4
A tg
4
B tg
4
B . 
b. Xác định các giá trị của A,B,C để biểu thức sau đạt giá lớn nhất: 
 T=(1+ tg
2
A )(1+tg
2
B )(1+ tg
2
C ) 
Câu 4 . 
 Trên mặt phẳng toạ độ cho họ đường thẳng : y= x
m
m


1
)1(2 + 2)1(
)3)(1(
m
mm

 với m > 0. 
Tìm tất cả các điểm mà qua mỗi điểm đó có đúng hai đường thẳng của họ đi qua và hai đường 
thẳng này vuông góc với nhau 
Câu5. 
 không dùng máytính so sánh hai số sau A =log20002001 và B= log 20012002 
92. Năm học 2002-2003 
Câu1. 
 Cho hàm số : f(x) = x3 – 3x2 –7x + 6 (1)và M(x0;y0)là điểm thuộc đồ thị hàm số(1) . Tiếp 
tuyến tại M của đồ thị hàm số (1) cắt trục hoành tại A và cắt trục tung tại B . Tìm toạ độ của M 
sao cho các điều kiện sau đồng thời được thoả mãn : 
1. Hoàng độ của A là số dương 
2. Tung độ của B là số âm 
3. OB = 2OA ( O là gốc toạ độ 
Câu2. 
 1. Tìm nghiệm dương nhỏ nhất của phương trình : 2 2cos cos ( 2 1)x x x    
2. Giải bất phương trình : 3 1 3 3 18 2 4 2 5x x x        
Câu3. 
 Cho 2 họ đường tròn có phương trình : 
Đề thi HSG mụn Toỏn Trang 99 
Nguyễn Văn Xỏ 


 (Cm): x2 + y2 - 2mx + 2(m+1)y – 1 = 0; (Km): x2 + y2 - x + (m-1)y + 3 = 0 
1. Tìm trục đẳng phương của đường tròn 
2. Chứng minh rằng khi m thay đổi , trục đẳng phương luôn đi qua một điểm cố định . 
Câu4 . 
 Giả sử tham số a thuộc đoạn [ 0; ]
4
 và hàm số ; f(x) = 3x4 + 4x3 (cosa – sina)-3x2 sin2a xác 
định trên [-sina ; cosa]. Tìm a để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất . 
 . 
93. Năm học 2003-2004 
 Câu1 (5đ). 
 Giải bất phương trình sau : (3x -2x-1)( )23 x >0. 
Câu 2(6đ). 
1. Cho phương trình : x6 +3x5 -6x4 + a x3 - 6x2 +3x+1 =0 tìm a để phương trình có đúng hai 
nghiệm phân biệt. 
2. Chứng minh rằng với mọi giá trị của m hệ luôn có nghiệm (x ; y): 





0y 2mx - x
m2y -mx 
22 y
Câu3 (6đ). 
 Trong không gian cho hai đường thẳng d1,d2 sao cho 0x ,d1,d 2 đôi một chéo nhau và vuông 
góc với nhau 
1. Xét đường thẳng d bất kỳ đi qua 0 . gọi  ,, thứ tự là góc giữa d với các đường 0x ,d1,d. 
Chứng minh tg2 tg2 tg2 - (tg2 +tg2 +g2 ) =2. 
2. Biết rằng khoảng cách giữa ba đường thẳng bất kỳ trong ba đường 0x ,d1,d 2 cùng bằng 2 đơn 
vị độ dài . một hình hộp ABCD.A’B’C’D’ thoả mãn : B’ và d thuộc 0x ; A’ và C’ thuộc d1; A và 
D’ thuộc d2 . Tính thể tích hình hộp ABCD,A’B’C’D’. 
Câu 4(3đ). 
 Cho a,b dương chứng minh rằng : (a + 1)ln(a+1) + eb  (a +1) (b+1) 
24. Năm học 2004 - 2005 
Cõu 1 .( 6 điểm) 
 Cho hàm số f(x) = 22 2 2mx x x m    , với m là tham số. 
 1.Khi m = 3
2
 ; hãy tìm khoảng đồng biến, khoảng nghịch biến của hàm số. 
 2.Xác định m để hàm số nghịch biến trên R . 
 Câu 2 ( 4 điểm) 
 Tính tích phân I = 
21
4 2
1
1
( 1)( 1)x
x dx
x x e

   
Câu 3(7 điểm) 
Trên mặt phẳng với hệ toạ độ vuông góc Oxy; cho đường parabol (P) có phương trình: y = x2 và 
đường tròn (C) có phương trình: x2 + y2 – 2x – 6y + 1=0 
 1.Chứng minh rằng (P) và (C) có đúng 4 giao điểm phân biệt. 
Đề thi HSG mụn Toỏn Trang 100 
Nguyễn Văn Xỏ 


 2.Cho điểm A(1, 6) thuộc đường tròn (C) . Hãy lập phương trình đường tròn đi qua điểm 
M( 2, - 1) và tiếp xúc với đường tròn (C) tại điểm A. 
 3.Giả sử đường thẳng (d) thay đổi đi qua điểm A sao cho (d) cắt (P) tại hai điểm phân biệt 
T1 , T2 . Gọi (d1) , (d2) thứ tự là tiếp tuyến của (P) tại tiếp điểm T1 , T2 . Biết rằng (d1) cắt (d2) ở 
điểm N; hãy chứng minh điểm N nằm trên một đường thẳng cố định. 
Câu 4(3 điểm). 
 Chứng minh rằng với mọi số thực x thuộc khoảng ( 0 ; 1
2
  ) , ta đều có: 
3 3 3cos .sin( 1) cos( 1).sin cos .cos( 1)x x x x x x     
 .. 
94. Năm học 2005- 2006 
Cõu 1 (5 điểm). 
Cho hàm số: ( )3 22 2 1 2y x x m x m     (với m là tham số). 
1. Khi m = 0, gọi (d) là tiếp tuyến của đồ thị hàm số tại tiếp điểm cú hoành độ x = 0, 
gọi (d') là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số. Tỡm cosin của gúc giữa (d) và 
(d'). 
2. Xỏc định m để hàm số cú cực đại và cực tiểu sao cho giỏ trị cực đại và giỏ trị cực tiểu trỏi dấu 
nhau. 
Cõu 2 (4 điểm). 
Trờn mặt phẳng tọa độ Oxy cho đường trũn elip (E) cú phương trỡnh: 
2 2
1
9 7
x y  
và đường trũn (C) cú phương trỡnh: x2 +y2 = 16. Từ điểm M trờn (C) ta kẻ 
hai tiếp tuyến đến (E) là 1MT và 2MT với tiếp điểm theo thứ tự là 1T và 2T . 
1. Khi M cú hoành độ xM = 4, hóy viết phương trỡnh cỏc đường thẳng và . 
2. Khi M thay đổi trờn (C), hóy tỡm giỏ trị lớn nhất của khoảng cỏch từ M đến đường thẳng 
. 
Cõu 3 (3 điểm). 
Trong khụng gian tọa độ Oxyz, cho hỡnh lăng trụ tam giỏc đều OBC.O'B'C', biết: C(1;0;0), 
O'(0;0;1) 
và B nằm ở gúc phần tư thứ nhất của mặt phẳng tọa độ Oxy. Gọi M, N, E theo thứ tự 
là trung điểm cỏc cạnh BC, CC', C'O'. 
1. Xỏc định tọa độ của điểm P thuộc đường thẳng OO' để PM = PE. 
2. Với điểm P vừa tỡm được, hóy tớnh thể tớch khối tứ diện PMNE. 
Đề thi HSG mụn Toỏn Trang 101 
Nguyễn Văn Xỏ 

Cõu 4 (5 điểm). 
1. Giải phương trỡnh: 
2. Giải phương trỡnh: với ( ; )
2 2
x    . 
Cõu 5 (3 điểm). 
1. Chứng minh rằng: 
Nếu a là số dương sao cho bất phương trỡnh 1xa x  , nghiệm đỳng với mọi 0x thỡ a e . 
2. Tỡm tất cả cỏc số dương a là điều kiện cần và đủ để bất phương trỡnh: 
1xa x  , nghiệm đỳng với mọi số thực x. 
 . 
95. Năm học 2006- 2007 
Cõu 1 (5,0 điểm) 
 Cho hàm số : ( ) sin cos ( )1 12 2 1
2 2
y f x x x ax    
1) Khi a = -1, hóy tỡm điểm cực đại, điểm cực tiểu của hàm số (1). 
2) Tỡm a để đường thẳng (d): y = a(x + 1) tiếp xỳc với đồ thị hàm số (1). 
Cõu 2 (5,0 điểm) 
 Cho phương trỡnh: 
2 21 1 14 2x x m    , với m là tham số. 
1) Giải phương trỡnh đó cho khi m = 3. 
 2) Xỏc định m để phương trỡnh đó cho cú nghiệm. 
Cõu 3 (4,0 điểm) 
 Trong khụng gian với hệ toạ độ Oxyz cho điểm A(2;2;0), điểm B(1;0;-1) và mặt phẳng (P) cú 
phương trỡnh: 3x + 2y - z - 6 = 0. 
1) Tỡm toạ độ điểm C sao cho đường thẳng AC vuụng gúc với mặt phẳng (P), đồng thời C cỏch 
đều điểm B và gốc toạ độ O. 
Đề thi HSG mụn Toỏn Trang 102 
Nguyễn Văn Xỏ 

 2) Với tham số m, xột điểm M(2, m, 2m). Hóy tỡm giỏ trị nhỏ nhất của diện tớch tam giỏc ABM, 
khi tham số m thay đổi. 
Cõu 4 (4,0 điểm) 
 Trong mặt phẳng toạ độ Oxy cho đường trũn (C0) cú phương trỡnh: 
 2 2 4 3 4 0x y x    và điểm ( ; )2 3 0F . 
1) Gọi A là giao điểm cú tung độ dương của đường trũn (C0) với trục tung. Hóy lập phương trỡnh 
đường trũn (C1); biết rằng (C1) cú bỏn kớnh bằng 2, đồng thời hai đường trũn (C0) và (C1) tiếp 
xỳc ngoài với nhau tại A. 
 2) Giả sử đường trũn (C) cú tõm I thay đổi, sao cho (C) luụn đi qua F và tiếp xỳc với (C0). 
Chứng minh rằng I thuộc một đường hypebol cố định; hóy viết phương trỡnh của đường hypebol 
đú. 
Cõu 5 (2,0 điểm) 
 Tỡm tất cả cỏc cặp số (x; y) với x và y là cỏc số nguyờn dương thoả món: ( )
x y
x yx y x y

   
Đề thi HSG mụn Toỏn Trang 103 
Nguyễn Văn Xỏ 

Tài liệu đính kèm:

  • pdf03.Thi hsg toan3.pdf