ÔN THI KỲ II LỚP 10:
Phần I: các dạng toán cơ bản.
Dạng 1: Bất phương trình:
Câu 1: Giải bất phương trình:
ÔN THI KỲ II LỚP 10: Phần I: các dạng toán cơ bản. Dạng 1: Bất phương trình: Câu 1: Giải bất phương trình: a/ b/≥ 0 c/ d/2x2 + 1 £ 3x e/ f/ g/ h/ i/ j/ k/ l/ m/ n/ Câu 2:: Giải bất phương trình: b) c) d) e/ f/ g/ <0 Dạng 2: Các bài toán có chứa tham số: Câu 3: a/ Tìm m để bất phương trình x2 + (2m - 1)x + m – 1 >0 " x b/Tìm các giá trị của m để phương trình sau vô nghiệm: Câu 4: Cho bất phương trình (m - 1)x2 – (m + 1)x + m + 1 < 0. Tìm các giá trị của m sao cho bất phương trình trên nghiệm đúng với mọi xÎR. Câu 5: Xác định m để tam thức bậc hai f(x) = (m - 2)x2 + 2(2m - 3)x + 5m – 6 dương với mọi x; (m ¹ 2) Câu 6: Tìm m để phương trình: x2 + (1 – 2m)x + m2 – 1 = 0 có 2 nghiệm phân biệt. Câu 7: Cho phương trình (m + 1)x2 - 2(m - 1)x + m – 2 = 0 Tìm m để a/ Phương trình sau có hai nghiệm trái dấu: b/ Phương trình có 2 nghiệm phân biệt. c/Phương trình có 2 nghiệm dương phân biệt. c/Phương trình có 2 nghiệm âm phân biệt. Dạng 3: Giá trị lượng giác và công thức biến đổi: Câu 1: Tính già trị lượng giác còn lại của góc biết: Sin b) c) d) e/ và . Câu 2: Rút gọn biểu thức 5/ Câu 3: Chứng minh đẳng thức sau: 5) 6/ 7/ 8/ : sin2- sin2 = sin2a 9/ 10/ 11/ Câu 4: Tính giá trị của biểu thức: biết tanx=2 biết cotx= -3 3/ . Tính Câu 5/: Không sử dụng máy tính. Tính: Cos150 b. tan Câu 6/: Tính: a/ b/ Chứng minh rằng: Câu 7: a/ Cho sin a = 0,6 và . T ính sin 2a và cos 2a. b/ Tính giá trị lượng giác của góc α nếu: c/ Cho sin(x - p) = , với . Tính cos Dạng 4: Hệ thức lượng trong tam giác: Cho ABC có , AC = 8 cm, AB =5 cm. Tính cạnh BC. Tính diện tích ABC. CMR: góc nhọn. Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Tính đường cao AH. Cho ABC , a=13 cm b= 14 cm, c=15 cm. Tính diện tích ABC. Tính góc . tù hay nhọn. Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Tính . Cho tam giác ABC có b=4,5 cm , góc , Tính các cạnh a, c. Tính góc . Tính diện tích ABC. Tính đường cao BH. Cho DABC có = 60o, a = 10, r = . Tính R, b, c. Cho DABC có AB = 10, AC = 4 và = 60o. Tính chu vi của tam giác. Tính tanC. Dạng 5: Các bài toán về đường thẳng và đường tròn Viết phương trình tổng quát và tham số của đường thẳng trong các trường hợp sau: đi qua hai điểm A(1 ; 2) và B(4 ; 7) đi qua điểm M(2 ; - 3) và có hệ số góc k = cắt Ox và Oy lần lượt tại A(2 ; 0) và B(0 ; 5) vuông góc với Ox tại M( - 4 ; 0) Cho đường thẳng và . Viết phương trình đường thẳng đi qua và tạo với một góc . Cho cân đỉnh . Biết . Viết phương trình cạnh biết nó đi qua . Cho hình vuông biết và . Viết phương trình các cạnh và các đường chéo còn lại. Cho đường thẳng và . Viết phương trình đường thẳng đi qua và tạo với một góc . Cho cân đỉnh , biết: Viết phương trình đi qua . Cho tam giác ABC có A(5 ; 3), B( - 1 ; 2), C( - 4 ; 5). Viết phương trình của Các cạnh của tam giác Các đường cao của tam giác Các đường trung trực của tam giác Các đường trung tuyến. Viết phương trình đường thẳng trong các trường hợp sau: đi qua điểm M(- 2 ; - 4) và cắt các trục tọa độ lần lượt tại A và B sao cho tam giác OAB vuông cân. đi qua điểm N(5 ; - 3) và cắt các trục tọa độ lần lượt tại A và B sao cho N là trung điểm của AB đi qua điểm P(4 ; 1) và cắt hai tia Ox và Oy lần lượt tại hai điểm phân biệt A, B sao cho OA + OB nhỏ nhất. Cho DABC có A(-1;-2) B(3;-1) C(0;3) Lập pt tổng quát và pt tham số của đường cao CH, cạnh BC. Lập pt tổng quát và pt tham số của đường trung tuyến AM Xđịnh tọa độ trọng tâm , trực tâm của DABC Viết pt đường tròn tâm C tiếp xúc với AB Viết pt đường tròn ngoại tiếp DABC Tính diện tích DABC. Tìm điểm A đối xứng với A qua BC CHo DABC có tọa độ các trung điểm là M(2;1) N(5;3) P(3;-4) Lập pt các cạnh của DABC Viết pt 3 đường trung trực của DABC Xđịnh tọa độ 3 đỉnh của DABC Cho (d) x-2y+5=0 Xđịnh tọa độ H là hình chiếu của M(2;1) trên(d) Xđịnh tọa độ điểm N đối xứng với M qua (d) Cho 2 đường thẳng (d) 3x-4y+25=0 và (d’)15x+8y-41=0, I là giao điểm của 2 đthẳng. Viết ptrình đthẳng đi qua I tạo với Ox 1 góc 600 Viết ptrình đthẳng đi qua I sao cho khoảng cách từ I tới đthẳng đó = Viết phương trình của đường tròn (C) trong các trường hợp sau: (C) có tâm I(1 ; - 2) và tiếp xúc với đường thẳng 4x – 3y + 5 = 0 (C) đối xứng với (C’) có phương trình: qua đường thẳng x + y – 1 = 0 Viết phương trình đường tròn (C) trong các trường hợp sau: (C) đi qua 3 điểm A(1 ; 0), B(0 ; 2), C(2 ; 3) (C) đi qua A(2 ; 0), B(3 ; 1) và có bán kính R = (C) đi qua 2 điểm A(2 ; 1),B(4 ; 3) và có tâm I nằm trên đường thẳng x – y + 5= 0 Vi?t phuong trình du?ng tròn có tâm vàà tho? mãn di?u ki?n sau : a. có bán kính b. tiếp xúc với . c. di qua gốc toạ độ . d. tiếp xúc với . e. tiếp xúc với dường thẳng Phần II : MỘT SỐ ĐỀ MẪU: ĐỀ 1 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH Bài 1: Giải bpt a/ b/ . Bài 2: Cho phương trình: -x2 + 2 (m+1)x + m2 – 7m +10 = 0. a/ CMR phương trình có 2 nghiệm phân biệt với mọi m. b/ Tìm m để PT có 2 nghiệm trái dấu. Bài 3: cho cota = 1/3. Tính A = . Bài 4: Trong mp Oxy cho tam giác ABC có A (2;3) B(4;7), C(-3;6). 1/Viết phương trình đường trung tuyến BK của tam giác ABC. 2/Viết phương trình đường cao AH kẻ từ A đến trung tuyến BK. 3/Tính diện tích tam giác ABK. 4/Viết phương trình đường tròn ngoại tiếp tam giác ABC. II. PHẦN RIÊNG 1.Theo chương trình chuẩn. Bài 5a: Chứng minh đẳng thức sau: 2. Theo chương trình nâng cao. Bài 5b: Giải bất phương trình: . ĐỀ 2 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH Bài 1: Giải bất phương trình Bài 2: cho phương trình mx2 – 2(m-2)x +m – 3 =0. a/ Tìm m để phương trình có 2 nghiệm. b/ Tìm m để phương trình có 2 nghiệm x1, x2: x1 + x2 + x1. x2 2. Bài 3: CMR v ới a>0, b>0, c>0, ta có: Chứng minh đẳng thức sau: Bài 4: A(4;-2), B(2;-2), C(1;1). 1/ Viết phương trình tham số của d qua A và song song BC. 2/ Tính khoảng cách từ A đến BC. 3/ Tính góc 4/ Viết phương trình đường tròn ngoại tiếp tam giác ABC. II. PHẦN RIÊNG 1.Theo chương trình chuẩn. Bài 5a: Tính biết tanx=2 2. Theo chương trình nâng cao. Bài 5b: CMR ĐỀ 3 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH Bài 1: Tìm TXĐ của hàm số: Giải bất phương trình: Giải bất phương trình: Bài 2: Cho tam thức bậc hai: f(x) = –x2 + (m + 2)x – 4. Tìm các giá trị của tham số m để: a). Phương trình f(x) = 0 có 2 nghiệm phân biệt . b). Tam thức f(x) < 0 với mọi x. Bài 3: Cho tam giác ABC biết AB=12cm , BC=16cm , CA=20cm a).Tính cosA và tính diện tích tam giác ABC. b).Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Bài 4: Trong mặt phẳng Oxy cho đường tròn (C): Định tâm và tính bán kính của đường tròn (C). Qua A(1;0) hãy viết phương trình tiếp tuyến với đường tròn đã cho và tính góc tạo bởi 2 tiếp tuyến đó. II. PHẦN RIÊNG 1.Theo chương trình chuẩn. Bài 5a: a). Chứng minh rằng b). . Tính 2. Theo chương trình nâng cao. Bài 5b: : Cho tam giác ABC (đặt BC=a, AB=c, AC=b) Biết b=8, c=5, A=600. Tính S, R Chứng minh rằng: ĐỀ 4 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH Bài 1: Giải bất phương trình: a). b). Bài 2: Cho phương trình . Định m để phương trình có 2 nghiệm trái dấu. Định m để phương trình có nghiệm này gấp 3 lần nghiệm kia. Bài 3: Cho . Tính Rút gọn biểu thức: Bài 4: Trong mặt phẳng Oxy cho tam giác ABC có A(2;3), B(4;7), C(-3;6) Viết phương trình đường trung tuyến BK của tam giác ABC. Viết phương trình đường vuông góc AH kẻ từ A đến trung tuyến BK. Viết phương trình đường tròn ngoại tiếp tam giác ABC. Tìm tâm và bán kính của đường tròn này. II. PHẦN RIÊNG 1.Theo chương trình chuẩn. Bài 5a: 1). Cho DABC có = 60o, a = 10, r = . Tính R, b, c. 2). Giải phương trình 2. Theo chương trình nâng cao. Bài 5b: Định m để hàm số xác định với mọi x. Giải phương trình ĐỀ 5 I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH Bài 1: Cho phương trình : f(x)= . Với giá nào của m thì : Phương trình f(x)=0 vô nghiệm b/ f(x)>0 "x Bài 2: Cho Tính cosa, tana, cota Tính Bài 3: Cho tam giác ABC có . Tính các cạnh, góc A và diện tích của tam giác Tính chiều cao ha và trung tuyến ma Bài 4: Cho và đường thẳng Tìm tọa độ hình chiếu của A xuống đường thẳng (d). Tìm điểm đối xứng của A qua (d). II. PHẦN RIÊNG 1.Theo chương trình chuẩn. Bài 5a: 1). Giải bất phương trình và hệ bất phương trình sau a. b. 2).Viết phương trình đường tròn đường kính AB với 2. Theo chương trình nâng cao. Bài 5b: 1). Giải và biện luận 2). 3/ Cho đường cong a. Chứng tỏ luôn luôn là đường tròn. b. Tìm m để có bán kính nhỏ nhất. TRƯỜNG THPT QUANG TRUNG ĐỀ THI HỌC KÌ II – NĂM HỌC 2008-2009 MÔN TOÁN LỚP 10 (Chương trình nâng cao) Thời gian làm bài 90 phút Bài 1: (3đ) Giải các bất phương trình sau: 1) 2) 3) Bài 2: (1.5đ) Định m để bất phương trình sau vô nghiệm Bài 3: (2đ) Cho . Tính giá trị biểu thức Chứng minh đẳng thức: Bài 4: (1đ) Cho tam giác ABC có AB = 9 , AC = 12 , góc . Tính độ dài cạnh BC và đường cao AH Bài 5 : (2đ5) Trong mp Oxy cho ba tam giác ABC với A(-1; 0), B(1; 6), C(3; 2). a/ Viết phương trình cạnh AB b/ Tìm tọa độ C/ đối xứng với điểm C qua đường thẳng AB c/ Viết phương trình đường tròn (C ) qua A, B, C. TRƯỜNG THPT QUANG TRUNG ĐỀ THI HỌC KỲ II – NĂM HỌC 2008-2009 MÔN TOÁN LỚP 10 ( Chương trình cơ bản) Thời gian làm bài 90 phút Câu 1: ( 3đ) Giải các bất phương trình sau : a/ b/ c/ Câu 2: (1đ 5) Cho f(x) = (2m – 1)x2 – (m + 1)x + m. Tìm m để f(x) ≥ 0 " x. Câu 3: (2đ ) a/ Biết sin a= - và . Tính : cos a, tan a , cot a b/ Chứng minh rằng : Câu 4: (1đ) Cho tam giác ABC có AB = 9 , AC = 12 , góc . Tính độ dài cạnh BC và đường cao AH Câu 5:(2,5 đ ) Cho đường thẳng d: x-3y+6=0 và điểm E(-2;3). a) Viết phương trình đường thẳng qua E và song song với đường thẳng d b) Tìm tọa độ hình chiếu của E trên d. c) Viết phương trình đường tròn tâm E tiếp xúc với d. ĐỀ THI HKII 2008-2009 MÔN TOÁN 10 CB THỜI GIAN : 90 PHÚT ------------------------------ BÀI 1( 3đ: Giải các bất phương trình sau ) a/ (1đ) b/ (1đ) c/ (1đ) BÀI 2(1đ 5): f(x) = (2m – 1)2 – (m + 1)x + m. Tìm m để: a). Phương trình f(x) = 0 có 2 nghiệm trái dấu b). Bất phương trình f(x) 0 có tập nghiệm R BÀI 3(2đ) : a/ sinx = ( với <x < p). Tính cosx , tanx , cotx . (1đ) b/ Chứng minh đẳng thức sau: (1đ) BÀI 4(1,5đ): Cho tam giác ABC có A = 600; AB = 5, AC = 8 Tính diện tích S, đường cao AH và bán kính đường tròn ngoại tiếp của DABC. BÀI 5 (2đ): Trong mặt phẳng Oxy, cho DABC với A(1; 2), B(2; –3), C(3; 5). a). Viết phương trình tổng quát của đường cao kẻ từ A. (1đ) b). Viết phương trình đường tròn tâm B và tiếp xúc với đường thẳng AC. (1đ)
Tài liệu đính kèm: