Đề và đáp án thi thử đại học, cao đẳng môn thi: Toán (số 206)

Đề và đáp án thi thử đại học, cao đẳng môn thi: Toán (số 206)

 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0.

 Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy.

 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là

 tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N.

 

doc 5 trang Người đăng trường đạt Lượt xem 1389Lượt tải 0 Download
Bạn đang xem tài liệu "Đề và đáp án thi thử đại học, cao đẳng môn thi: Toán (số 206)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.
 Môn thi : TOÁN ( ĐỀ 206 )
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)
Câu I. (2.0 điểm)
 Cho hàm số y = (C)
 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) 
 đến tiếp tuyến là lớn nhất.
Câu II. (2.0 điểm)
 1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết xÎ [ 0 ;].
 2. Giải hệ phương trình 
Câu III. (1.0 điểm)
 Tính tích phân 
Câu IV. (1.0 điểm)
 Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx ³ 2xyz
 Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1).
Câu V. (1.0 điểm)
 Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c. Tính thể tích của tứ diện ABCD.
PHẦN RIÊNG ( 3.0 điểm)
Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không được chấm điểm). 
 A. Theo chương trình nâng cao
Câu VIa. (2.0 điểm)
 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0. 
 Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy.
 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là
 tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N.
Câu VIIa. (1.0 điểm)
 Giải bất phương trình 
B. Theo chương trình chuẩn
Câu VIb. (2.0 điểm)
 1. Cho elip (E) : 4x2 + 16y2 = 64.Gọi F1, F2 là hai tiêu điểm. M là điểm bất kì trên (E).Chứng tỏ rằng
 tỉ số khoảng cách từ M tới tiêu điểm F2 và tới đường thẳng x = có giá trị không đổi. 
 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q):
 x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q).
Câu VIIb. (1.0 điểm)
 Giải bất phương trình (, là tổ hợp, chỉnh hợp chập k của n phần tử)
.................HẾT..............
 ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012.
 Môn thi : TOÁN ( ĐỀ 206 )
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)
CÂU
NỘI DUNG
THANG ĐIỂM
2.(1.0đ)
Giả sử M(x0 ; y0) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối xứng đến tiếp tuyến là lớn nhất.
Phương trình tiếp tuyến tại M có dạng : 
0.25
Ta có d(I ;tt) = Xét hàm số f(t) = ta có f’(t) = 
0.25
f’(t) = 0 khi t = 1
Bảng biến thiên
từ bảng biến thiên ta c 
d(I ;tt) lớn nhất khi và 
chỉ khi t = 1 hay 
0.25
+ Với x0 = 0 ta có tiếp tuyến là y = -x
+ Với x0 = 2 ta có tiếp tuyến là y = -x+4
0.25
Câu II(2.0đ)
1. (1.0đ)
 Phương trình đã cho tương đương với
 2(cos4x + cos2x) = (cos2x + 1) + sin2x 
0.25
0.25
+ 
+ 
0.25
 vì x
0.25
2.(1.0đ)
ĐK: 
Hệ phương trình 
0.25
(do )
Giải (1): 
0.25
0.25
Với x 0 thay vao (2) ta được y = 0
Với thay vao (2) ta được y = 
Kết hợp với điều kiện ta được nghiệm của phương trình là ,y = 
0.25
Câu III. (1.0đ)
Đặt I = . Ta có I = 
0.25
Ta tính Đặt t = x3 ta có 
0.25
Ta tính Đặt t = 
0.25
Khi đó Vậy I = I1+ I2 
0.25
Câu IV. (1.0đ)
Ta có nên 
0.25
Tương tự ta có 
0.25
Nhân vế với vế của (1), (2), (3) ta được 
0.25
vậy Amax = 
0.25
Câu V. (1.0đ)
Qua B, C, D lần lượt dựng các đường thẳng 
Song song với CD, BD, BC cắt nhau tại M, N, P
Ta có MN = 2BD, MP = 2CD, NP = 2BC
từ đó ta có các tam giác AMN, APM, ANP
vuông tại A Đặt x = AM, y = AN, AP = z ta có
Vậy V = 
1.0
Câu VIa. (2.0đ)
1. (1.0đ)
Gọi A là giao điểm d1 và d2 ta có A(3 ;0)
Gọi B là giao điểm d1 với trục Oy ta có B(0 ; - 4)
Gọi C là giao điểm d2 với Oy ta có C(0 ;4)
0.5
Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có 
I(4/3 ; 0), R = 4/3
0.5
2. (1.0đ)
Chọn hệ trục toạ độ như hình vẽ
Ta có M(1 ;0 ;0), N(0 ;1 ;1)
B(2 ;0 ;2), C’(0 ;2 ;2)
Gọi phương tình mặt cầu đi qua 4 điểm M,N,B,C’ có dạng 
x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0
Vì mặt cầu đi qua 4 điểm nên ta có 
Vậy bán kính R = 
1.0
Câu VIIa (1.0đ)
Câu VIb 
(2.0đ)
1. (1.0đ)
Đk: x > - 1
0.25
bất phương trình 
0.25
0.25
0.25
Ta có Giả sử M(x0 ; y0)thuộc (E) H là hình chiếu của M trên đường thẳng . Ta có MF2 = a - cx0/a = 
0.5
MH = . Vậy không đổi
0.5
2. (1.0đ)
Ta có 
Vì nên mặt phẳng (P) nhận làm véc tơ pháp tuyến
Vậy (P) có phương trình x - 2y + z - 2 = 0
1.0
Câu VIIb (1.0đ)
nghiệm bất phương trình là x = 3 và x = 4
1.0
Chó ý: NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®­îc ®ñ ®iÓm tõng phÇn nh­ ®¸p ¸n quy ®Þnh

Tài liệu đính kèm:

  • docDe thi thu dai hoc SỐ 206.doc